A Tracy-Widom Empirical Estimator For Valid P-values With High-Dimensional Datasets

Maxime Turgeon
10 August 2019

University of Manitoba
Departments of Statistics and Computer Science

Motivating Example

Systemic Autoimmune Diseases

- Systemic Autoimmune diseases, e.g. Rheumatoid arthritis, Lupus, Scleroderma, impact many systems at once.
- We want to study the association between DNA methylation and these diseases
- To account for the complex biological architecture, we want to measure the association at the genetic pathway level
- High-Dimensional Data

How can we efficiently compute valid p-values?

High-dimensional inference

Double Wishart Problem

- Many multivariate methods involve maximising a Rayleigh quotient:

$$
R^{2}(w)=\frac{w^{\top} A w}{w^{\top}(A+B) w}
$$

- This approach is equivalent to finding the largest root λ of a double Wishart problem:

$$
\operatorname{det}(\mathbf{A}-\lambda(\mathbf{A}+\mathbf{B}))=0
$$

Double Wishart Problem

Well-known examples of double Wishart problems:

- Multivariate Analysis of Variance (MANOVA);
- Canonical Correlation Analysis (CCA);
- Testing for independence of two multivariate samples;
- Testing for the equality of covariance matrices of two independent samples from multivariate normal distributions;

In all the examples above, the largest root λ summarises the strength of the association.

Contributions

The main contribution:

1. I will provide an empirical estimate of the distribution of the largest root of the determinantal equation. This estimate can be used to compute valid p-values and perform high-dimensional inference.

Two R packages implement this method: pcev and covequal (both available on CRAN)

Inference

There is evidence in the literature that the null distribution of the largest root λ should be related to the Tracy-Widom distribution.

Theorem
(Johnstone 2008) Assume $\mathbf{A} \sim W_{p}(\Sigma, m)$ and $\mathbf{B} \sim W_{p}(\Sigma, n)$ are independent, with Σ positive-definite and $\boldsymbol{n} \leq \boldsymbol{p}$. As $p, m, n \rightarrow \infty$, we have

$$
\frac{\operatorname{logit} \lambda-\mu}{\sigma} \xrightarrow{\mathcal{D}} T W(1),
$$

where $T W(1)$ is the Tracy-Widom distribution of order 1 , and μ, σ are explicit functions of p, m, n.

Inference

- However, Johnstone's theorem requires an invertible matrix.
- The null distribution of λ is asymptotically equal to that of the largest root of a scaled Wishart (Srivastava).
- The null distribution of the largest root of a Wishart is also related to the Tracy-Widom distribution.
- More generally, random matrix theory suggests that the Tracy-widom distribution is key in central-limit-like theorems for random matrices.

Empirical Estimate

We propose to obtain an empirical estimate as follows:

Estimate the null distribution

1. Perform a small number of permutations (~ 50).

- The actual procedure is problem-specific.

2. For each permutation, compute the largest root statistic.
3. Fit a location-scale variant of the Tracy-Widom distribution.

Numerical investigations support this approach for computing \mathbf{p}-values. The main advantage over a traditional permutation strategy is the computation time.

Simulations

Distribution Estimation

- We generated 1000 pairs of Wishart variates $\mathbf{A} \sim W_{p}(\Sigma, m)$, $\mathbf{B} \sim W_{p}(\Sigma, n)$ with $m=96$ and $n=4$ fixed
- MANOVA: this would correspond to four distinct populations and a total sample size of 100
- We varied $p=500,1000,1500,2000$
- We looked at two different covariance structures: $\Sigma=I_{p}$, and an exchangeable correlation structure with parameter $\rho=0.2$.
- We looked at four different numbers of permutations for the empirical estimator: $K=25,50,75,100$.
- We compared graphically the CDF estimated from the empirical estimate with the true CDF

Distribution Estimation

$$
\text { Type - True CDF - Heuris. } 25 \text { - Heuris. } 50 \text { - Heuris. } 75 \text { - Heuris. } 100
$$

P-value Comparison

We looked at the following high-dimensional simulation scenario:

- We fixed $n=100$.
- We generated $X \sim N_{p}\left(0, I_{p}\right)$ and $\mathbf{Y} \sim N_{p}(0, \Sigma)$, with $p=200,300,400,500$.
- We selected an autocorrelation structure Σ :

$$
\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\rho^{|i-j|}, \quad \rho=0,0.2
$$

- We compared the empirical estimate with a permutation procedure (250 permutations).
- Each simulation was repeated 100 times.

P-value Comparison

Data Analysis

- DNA methylation measured with Illumina 450k on 28 cell-separated samples
- We focus on Monocytes only.
- 18 patients suffering from Rheumatoid arthritis, Lupus, Scleroderma
- We group locations by biological KEGG pathways
- The number of genomic locations per pathway ranged from 39 to 21,640 , with an average around 2000 dinucleotides.
- 134,941 CpG dinucleotides were successfully matched to one of 320 KEGG pathways
- On average, each locations appears in 4.5 pathways \Rightarrow effectively 70 independent hypothesis tests

Results

Description	P-value	P-value (permutation)
Glutamatergic synapse	1.91×10^{-4}	7.00×10^{-4}
Ras signaling pathway	1.33×10^{-3}	1.40×10^{-3}
Circadian rhythm	1.52×10^{-3}	1.00×10^{-4}
Histidine metabolism	1.59×10^{-3}	3.00×10^{-4}
Pathogenic E. coli infection	1.65×10^{-3}	5.20×10^{-3}

Results

path:hsa00120—Glutamatergic synapse: Comparison of VIF and univariate p -values for the most significant pathway.

Conclusion

- Data summary is an important feature in data analysis, and this is the objective of dimension reduction techniques.
- In a high-dimensional setting, estimation and inference are more challenging
- Estimation: Truncated SVD
- Inference: Fitted location-scale Tracy-Widom
- Our approach is computationally simple.
- Everything presented today has been implemented in two R packages.

Demo

Principal Component of Explained Variance (PCEV)

- Provides an optimal strategy for selecting a low dimensional summary of \mathbf{Y} that can be used to test for association with one or several covariates of interest.
- Goal: Find the linear combination (or component) that maximises the proportion of variance explained by the covariates

PCEV: Statistical Model

Let \mathbf{Y} be a multivariate outcome of dimension p and X, a vector of covariates.

We assume a linear relationship:

$$
\mathbf{Y}=\beta^{T} X+\varepsilon
$$

The total variance of the outcome can then be decomposed as

$$
\begin{aligned}
\operatorname{Var}(\mathbf{Y}) & =\operatorname{Var}\left(\beta^{T} X\right)+\operatorname{Var}(\varepsilon) \\
& =V_{M}+V_{R}
\end{aligned}
$$

PCEV: Statistical Model

Decompose the total variance of \mathbf{Y} into:

1. Variance explained by the covariates;
2. Residual variance.

PCEV: Statistical Model

The PCEV framework seeks a linear combination $w^{\top} \mathbf{Y}$ such that the proportion of variance explained by X is maximised; this proportion is defined as the following Rayleigh quotient:

$$
R^{2}(w)=\frac{w^{\top} V_{M} w}{w^{T}\left(V_{M}+V_{R}\right) w} .
$$

A solution to this maximisation problem can be obtained through a combination of Lagrange multipliers and linear algebra.

Key observation: $R^{2}(w)$ measures the strength of the association

Acknowledgements

- Celia Greenwood (McGill University)
- Aurélie Labbe (HEC Montréal)

Funding for this project was provided by CIHR, FQR-NT, and the Ludmer Centre for Neuroinformatics and Mental Health.

Questions or comments?

For more information and updates, visit
 maxturgeon.ca.

