Principal Component of Explained Variance

High-Dimensional Estimation and Inference

Max Turgeon
February 14th, 2020
University of Manitoba
Departments of Statistics and Computer Science

Introduction

- In modern statistics, we often encounter multivariate data of large dimension $(p>n)$.
- In biomedical sciences (e.g. neuroimaging, genomics), pattern recognition, text recognition, finance, etc.
- We are often faced with the following problem:
- Given two multivariate datasets $\mathbf{W}=\left(W_{1}, \ldots, W_{p}\right)$ and $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{q}\right)$, how do we test for global association, and how do we identify which variables drive the association?

Introduction

- Regression: $E(\mathbf{W} \mid \mathbf{Z})=B^{T} \mathbf{Z}$.
- The matrix B of regression parameters controls the global association and the contribution of each components of \mathbf{Z}.
- Regularized regression can also be used to detect sparse signals (e.g. Lasso, SCAD).
- However, this framework can be cumbersome when W has dimension greater than one, especially when we have heterogeneous variable types (e.g. continuous and categorical).

Motivating Examples

Motivating Examples

The next examples have the following in common:

We have a (possibly high-dimensional) multivariate vector \mathbf{Y} and a set of covariates \mathbf{X}.

We are interested in low dimensional representations of \mathbf{Y} that summarise the relationship between \mathbf{Y} and \mathbf{X}.

Motivating Example \#1

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

- Digit recognition: A famous example in machine learning coming from Le Cun et al. (1990).
- Consists of 28×28 gray scale images of digits (i.e. 784 pixels), where the goal is to automatically identify the digit.
- \mathbf{Y} is the set of gray scale values for each pixel, and \mathbf{X} is the digit to which the image corresponds
- We would like to extract lower-dimensional features to use for predicting the digit.

Motivating Example \#2

- Data from 340 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
- Brain imaging was employed to assess amyloid- $\beta(\mathrm{A} \beta)$ protein load in 96 brain regions
- \mathbf{Y} is the set of $\mathbf{A} \beta$ load values for each brain region, and \mathbf{X} is the (binary) disease status.

Motivating Example \#3

- The dataset consists of 40 blood samples, separated into different cell types (T cells, B cells, monocytes), and for which methylation levels were measured at 24,000 locations along the genome.
- \mathbf{Y} is the set of DNA methylation values for all 24,000 locations, and \mathbf{X} is the cell type.

Principal Component of Explained Variance (PCEV)

- Provides an optimal strategy for selecting a low dimensional summary of \mathbf{Y} that can be used to test for association with one or several covariates of interest.
- Goal: Find the linear combination (or component) that maximises the proportion of variance explained by the covariates

Summary

1. Estimation strategies
2. Analytical framework for hypothesis testing

- High-dimensional inference

3. An R package implementing this method (pcev available on CRAN)

Methods

PCEV: Statistical Model

Let \mathbf{Y} be a multivariate outcome of dimension p and \mathbf{X}, a vector of covariates.

We assume a linear relationship:

$$
\mathbf{Y}=B^{T} \mathbf{X}+\varepsilon
$$

The total variance of the outcome can then be decomposed as

$$
\begin{aligned}
\operatorname{Var}(\mathbf{Y}) & =\operatorname{Var}\left(B^{T} \mathbf{X}\right)+\operatorname{Var}(\varepsilon) \\
& =V_{M}+V_{R}
\end{aligned}
$$

PCEV: Statistical Model

Decompose the total variance of \mathbf{Y} into:

1. Variance explained by the covariates;
2. Residual variance.

PCEV: Statistical Model

The PCEV framework seeks a linear combination $w^{T} \mathbf{Y}$ such that the proportion of variance explained by \mathbf{X} is maximised; this proportion is defined as the following Rayleigh quotient:

$$
R^{2}(w)=\frac{w^{\top} V_{M} w}{w^{\top}\left(V_{M}+V_{R}\right) w} .
$$

We can solve this maximisation problem by looking at the largest eigenvalue of $\left(V_{M}+V_{R}\right)^{-1} V_{M}$.

Key observation: $R^{2}(w)$ measures the strength of the association

More Dimension Reduction

- PCA: Maximise total variance
- CCA: Maximise correlation
- PLS: Maximise covariance
- RDA: Maximise redundancy index
- PCEV: Maximise proportion of variance explained

All these methods (except PCA) have serious limitations with high-dimensional data.

Block-diagonal Estimator

With high-dimensional data, the sample covariance matrix is no longer invertible, and therefore we cannot use it to estimate the largest eigenvalue of $\left(V_{M}+V_{R}\right)^{-1} V_{M}$.

We propose a block approach to the computation of PCEV in the presence of high-dimensional outcomes.

- Suppose the outcome variables can be divided in blocks of variables in such a way that
- Variables within blocks are correlated
- Variables between blocks are uncorrelated

$$
\operatorname{Cov}(\mathbf{Y})=\left(\begin{array}{lll}
* & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & * & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & *
\end{array}\right)
$$

Block-diagonal Estimator

- If the blocks are small enough, we can perform PCEV on each of them, resulting in a component for each block.
- Treating all these "partial" PCEVs as a new, multivariate pseudo-outcome, we can perform PCEV again; the result is a linear combination of the original outcome variables.

With the above assumption, I showed that this is mathematically equivalent to performing PCEV in a single-step. (Stat Meth Med Res, 2018)

Finally, we can compute p-values using a permutation procedure.

Simulations

Simulation Setting

- We compared 4 different approaches:
- PCEV-block, with blocks assumed known a priori
- PCEV-block, with blocks selected randomly
- Lasso
- Sparse Partial Least Squares (sPLS)
- We fixed the sample size at $n=100$ and simulated $p=100,200,300,400,500$ outcomes; we distributed the outcome variables in 10 blocks.
- We also varied the correlation between $\left(\rho_{b}\right)$ and within $\left(\rho_{w}\right)$ blocks (0, 0.5, 0.7).
- We simulated a single continuous covariate from a standard normal distribution. 25% of the outcomes in each block are associated with \mathbf{X}.

Simulation Setting

- Whereas PCEV treats the multivariate, p-dimensional \mathbf{Y} as the outcome variable and \mathbf{X} as the covariate, we inverted these roles for both Lasso and sPLS, so that variable selection happens on \mathbf{Y}.
- The test statistics for Lasso and sPLS were as follows:
- Lasso: Correlation between \mathbf{X} and $\hat{\beta}_{L} \mathbf{Y}$
- sPLS: Maximised covariance
- P-values were computed using a permutation procedure.

Simulation Results: Power analysis

Data analysis

Motivating Example \#2

- Recall: Data on amyloid- β accumulation in $p=96$ brain regions, measured on $n=340$ subjects. We are interested in the association with Alzheimer's disease.
- We used this dataset to compare the block approach to the traditional approach (since $n>p$)
- We defined blocks using hierarchical clustering.

Results

P -values for the joint association between amyloid- β accumulation and disease status. Permutation tests were performed using 100,000 permutations.

	PCEV	PCEV with blocks
Exact test	8.13×10^{-5}	-
Permutation test	2×10^{-5}	5×10^{-5}

Variable Importance Factor

- VIF: Correlation between a single variable Y_{j} in \mathbf{Y} and the PCEV component (in absolute value).
- VIF allows us to decompose the global association into individual components; the higher the VIF, the stronger the contribution of an individual variable.

Variable Importance Factor

Motivating Example \#3

- BLK gene, located on chromosome 8
- Data provided by Tomi Pastinen (McGill)
- $n=40$ blood samples, from 3 different cell types
- B cells ($n=8$)
- T cells ($\mathrm{n}=19$)
- Monocytes ($\mathrm{n}=13$)
- $p=24,068$ locations on the DNA

Goal: Investigate the association between methylation levels in the BLK region (outcomes) and cell type (covariate: B cell vs T cell and monocytes)

- We used the block approach, where blocks were defined using physical distance: CpGs within 500 kb are grouped together
- 951 blocks were analysed
- Using PCEV, we obtained a single p-value, which is less than 6×10^{-5} (using 100,000 permutations)
- Hence, a single test for all variables, and no tuning parameter was required.

Summary

- The block approach has good power compared to common high-dimensional methods
- Results are robust to how blocks are defined
- P-values are similar
- Power is similar
- Variable Importance Factors are also similar

High-dimensional inference

Double Wishart Problem

- Recall that PCEV is maximising a Rayleigh quotient:

$$
R^{2}(w)=\frac{w^{T} V_{M} w}{w^{T}\left(V_{M}+V_{R}\right) w}
$$

- This approach is equivalent to finding the largest root λ of a double Wishart problem:

$$
\operatorname{det}(\mathbf{A}-\lambda(\mathbf{A}+\mathbf{B}))=0
$$

where $A=V_{M}, B=V_{R}$.

Double Wishart Problem

There are many well-known examples of double Wishart problems:

- Multivariate Analysis of Variance (MANOVA);
- Canonical Correlation Analysis (CCA);
- Testing for independence of two multivariate samples;
- Testing for the equality of covariance matrices of two independent samples from multivariate normal distributions;
- Principal Component of Explained Variance (PCEV).

In all the examples above, the largest root λ summarises the strength of the association.

Contributions

The main contribution:

1. I provide an empirical estimate of the distribution of the largest root of the determinantal equation. This estimate can be used to compute valid p-values and perform high-dimensional inference.

I illustrate this approach using PCEV, but it is applicable to any double Wishart problem (e.g. CCA and LDA).

Inference

There is evidence in the literature that the null distribution of the largest root λ should be related to the Tracy-Widom distribution.

Theorem
(Johnstone 2008) Assume $\mathbf{A} \sim W_{p}(m, \Sigma)$ and $\mathbf{B} \sim W_{p}(n, \Sigma)$ are independent, with Σ positive-definite and $\boldsymbol{n} \leq \boldsymbol{p}$. As $p, m, n \rightarrow \infty$, we have

$$
\frac{\operatorname{logit} \lambda-\mu}{\sigma} \xrightarrow{\mathcal{D}} T W(1),
$$

where $\operatorname{TW}(1)$ is the Tracy-Widom distribution of order 1 , and μ, σ are explicit functions of p, m, n.

Inference

- However, Johnstone's theorem requires an invertible matrix.
- More evidence: The null distribution of λ is asymptotically equal to that of the largest root of a scaled Wishart variate (Srivastava).
- The null distribution of the largest root of a Wishart is also related to the Tracy-Widom distribution.
- More generally, random matrix theory suggests that the Tracy-widom distribution is key in central-limit-like theorems for random matrices.

Empirical Estimate

We propose to obtain an empirical estimate as follows:

Estimate the null distribution

1. Perform a small number of permutations (~ 50) on the rows of \mathbf{Y};
2. For each permutation, compute the largest root statistic.
3. Fit a location-scale variant of the Tracy-Widom distribution.

Numerical investigations support this approach for computing p-values. The main advantage over a traditional permutation strategy is the computation time.

Simulations

Distribution Estimation

- We generated 1000 pairs of Wishart variates $\mathbf{A} \sim W_{p}(m, \Sigma)$, B $\sim W_{p}(n, \Sigma)$ with $m=96$ and $n=4$ fixed
- MANOVA: this would correspond to four distinct populations and a total sample size of 100
- We varied $p=500,1000,1500,2000$
- We looked at two different covariance structures: $\Sigma=I_{p}$, and an exchangable correlation structure with parameter $\rho=0.2$.
- We looked at four different numbers of permutations for the empirical estimator: $K=25,50,75,100$.
- We compared graphically the CDF estimated from the empirical estimate with the true CDF

Distribution Estimation

$$
\text { Type - True CDF - Heuris. } 25 \text { - Heuris. } 50 \text { - Heuris. } 75 \text { - Heuris. } 100
$$

P-value Comparison

We looked at the following high-dimensional simulation scenario:

- We fixed $n=100$ and a balanced binary covariate \mathbf{X}.
- We varied the number of response variables $p=200,300$, 400,500 and the association between \mathbf{X} and the first 50 response variables in \mathbf{Y}.
- We compared the empirical estimate with a permutation procedure (250 permutations).
- Each simulation was repeated 100 times.

P-value Comparison

Extension to linear shrinkage covariance estimators

- The setting above follows closely the result of Johnstone (all random matrices are Wishart)
- On the other hand, our empirical estimator also shows good performance when we replace V_{R} by a linear shrinkage estimator.
- Ledoit \& Wolf (2004) studied covariance estimators of the form $\Sigma^{*}=\rho_{1} I+\rho_{2} S$
- They found explicit expressions for optimal ρ_{1}, ρ_{2} and derived consistent estimators for these quantities.

PCEV with shrinkage

- To assess the performance of our Tracy-Widom empirical estimator under this extended setting, we repeated our p-value comparison from above.
- We replaced the matrix V_{R} in PCEV by its linearly shrunk version.
- We compared with the p-values obtained from a permutation strategy.

P-value Comparison

Data Analysis

- DNA methylation measured with Illumina 450k on 28 cell-separated samples
- We focus on Monocytes only.
- 18 patients suffering from Rheumatoid arthritis, Lupus, Scleroderma
- We group locations by biological KEGG pathways
- The number of genomic locations per pathway ranged from 39 to 21,640 , with an average around 2000 dinucleotides.
- 134,941 CpG dinucleotides were successfully matched to one of 320 KEGG pathways
- On average, each locations appears in 4.5 pathways \Rightarrow effectively 70 independent hypothesis tests

Results

Description	P -value	P -value (permutation)
Glutamatergic synapse	1.91×10^{-4}	7.00×10^{-4}
Ras signaling pathway	1.33×10^{-3}	1.40×10^{-3}
Circadian rhythm	1.52×10^{-3}	1.00×10^{-4}
Histidine metabolism	1.59×10^{-3}	3.00×10^{-4}
Pathogenic E. coli infection	1.65×10^{-3}	5.20×10^{-3}

Results

path:hsa00120—Glutamatergic synapse: Comparison of VIF and univariate p -values for the most significant pathway.

Conclusion

- Dimension reduction techniques aim to summarise high-dimensional vectors with low-dimensional ones while retaining important features in the data.
- Principal Component of Explained Variance is an interesting alternative to PCA
- It is optimal in capturing the association with covariates
- In a high-dimensional setting, estimation and inference are more challenging
- Estimation: Truncated SVD, or block-diagonal estimator
- Inference: Fitted location-scale Tracy-Widom, or permutation strategy.

Conclusion

- Our approach is computationally simple and provides good power.
- Simulations and data analyses confirm its advantage over a more traditional approach using PCA, as well as other high-dimensional approaches such as regularized regression and sparse PLS.
- The empirical estimate of the distribution of λ has already been successfully applied to other double Wishart problems (test of covariance equality and CCA).
- Everything presented today has been implemented in an R package called pcev (available on CRAN).

Motivating Example \#1

- PCEV could be used to extract features from data and possibly increase predictive accuracy.
- However, there is evidence in the literature that linear features have limited predictive power in pattern recognition.
- We would therefore need a nonlinear variant of PCEV
$\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
01
\downarrow
3
4
5
6
7
89

Acknowledgements

- Karim Oualkacha (UQAM)
- Antonio Ciampi (McGill University)
- Celia Greenwood (McGill University)
- Aurélie Labbe (HEC Montréal)

Funding for this project was provided by CIHR, FQR-NT, and the Ludmer Centre for Neuroinformatics and Mental Health.

Questions or comments?

For more information and updates, visit maxturgeon.ca.

