
Dimension Reduction and High-Dimensional

Data:

Estimation and Inference with Application to

Genomics and Neuroimaging

Maxime Turgeon

Doctor of Philosophy

Department of Epidemiology, Biostatistics and Occupational Health

McGill University
Montréal, Québec

April 2019

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy

c○ Copyright Maxime Turgeon, 2019



Dedication

This thesis is dedicated to my loving wife, Geneviève, and our family.

ii



Acknowledgements

First and foremost, I would like to thank my co-supervisors, Dr. Celia Greenwood and Dr.

Aurélie Labbe. As Aurélie told me at our very first meeting, a good supervisory team is more

important than a good research topic. Their support, patience and incredible availability

were key ingredients in making this thesis possible. Celia’s vast knowledge of genomics and

statistical genetics, combined with Aurélie’s attention to details, made them an excellent

supervisory team, better than any PhD candidate could hope for. As I continue to grow as

a researcher, their thoughtful comments and advice will keep shaping my career and make

me a better statistician and mentor to my own students.

I want to acknowledge the financial support I received from the Fonds de recherche Nature

et Technologies du Québec, the Ludmer Centre for Neuroinformatics and Mental Health,

and the Faculty of Medicine, the latter of which funded a one-week research stay at Stanford

University. I also want to thank Celia for financially supporting my travelling to conferences.

I also want to acknowledge the use of Calcul Québec’s scientific computing services, along

with the computing facility at the Lady Davis Institute for Medical Research. All the sim-

ulations and data analyses presented in this thesis were performed on one of these two

computing platforms.

I want to thank the Department of Epidemiology, Biostatistics and Occupational Health for

believing that someone with a background in arithmetic geometry could be a successful PhD

candidate. To Dr. James Hanley, Dr. Andrea Benedetti, Dr. Olli Saarela, Dr. Erica Moodie,

you have taught me so much and made me a better statistician. The strong (bio)statistical

foundation I now have is due to your dedication and that of your colleagues from the De-

partment of Statistics

To my brothers in arms, Sahir Bhatnagar and Kevin McGregor, I am grateful for all the

conversations we have had over the years and for indulging my constant sharing of statistical

iii



blog posts. I have learned tremendously from your insistence on details, tough questions,

and clarity.

Finally, this thesis would not have been possible without the constant support of my wife,

Geneviève, and our family. To them, I am eternally grateful.

iv



Preface & Contribution of Authors

This thesis contains new research in addition to an introductory overview of methodological

approaches to dimension reduction of high-dimensional datasets.

Chapters 1 and 2 contain an original introduction and summary of selected methodological

approaches to dimension reduction of high-dimensional datasets. These chapters were writ-

ten entirely by Maxime Turgeon (MT). They were both edited and corrected by Celia MT

Greenwood (CMTG) and Aurélie Labbe (AL).

The idea for the study in Chapter 3 was conceived by Karim Oualkacha (KO) and AL. The

proof of the main theorem was written by MT, and all methodological work, writing, pro-

gramming, and analyses were carried out by MT with CMTG and AL as advisors, editors

(also contributing small amounts of content directly) and troubleshooters.

Chapter 4 was conceptualized by MT. MT carried out the methodological work, writing,

programming, and analysis. AL and CMTG served as advisors and editors. Helpful discus-

sions with Stepan Grinek (SG) also helped shape early versions of the manuscript.

For Chapter 5, MT and CMTG contributed to the conceptualization of the data analysis;

Kathleen Klein (KK) contributed to the data curation; MT contributed to the formal anal-

ysis and the writing of the original draft; all authors contributed to editing the draft.

Chapter 6, which concludes the thesis, was written by MT and edited by CMTG and

AL.

v



Abstract

Recent technological advances in many domains including both genomics and brain imaging

have led to an abundance of high-dimensional and correlated data being routinely collected.

A widespread analytical goal in these fields is to investigate the relationships between, on

the one hand, a group of genomic markers or anatomical brain measurements and, on the

other hand, a set of clinical variables or phenotypes. To leverage the correlation within

each set of measurements, and to improve the interpretability of a measure of the associa-

tion, one can use dimension reduction techniques: one, or both, group of variables can be

summarised by a small set of latent features that summarise the structure of interest and

capture association through an appropriately chosen statistic. But the high-dimensionality

of contemporary datasets brings many computational and theoretical challenges, and most

classical multivariate methods cannot be used directly.

This thesis is comprised primarily of three manuscripts that investigate the issues related to

measuring association in high dimensional datasets. In the first manuscript, I explore the

optimality properties of a dimension reduction method known as Principal Component of Ex-

plained Variance (PCEV). This method seeks a linear combination of the outcome variables

that maximises the proportion of variance explained by a set of covariates of interest. I then

explain how PCEV can be extended to a computationally simple and efficient estimation

strategy for high-dimensional outcomes (p > n) that relies on a “block-independence” as-

sumption. In the second manuscript, I study the problem of inference with high-dimensional

datasets: given two datasets Y and X, with one or both being high-dimensional, how can we

perform a test of association in a computationally efficient way? Specifically, I look at the set

of multivariate methods that can be described as a double Wishart problem; PCEV, Canon-

ical Correlation Analysis (CCA), and Multivariate Analysis of Variance (MANOVA) are all

examples of double Wishart problems. I show that valid high-dimensional p-values can be

derived using an empirical estimator of the null distribution. This is achieved by performing
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a small number of permutations, and then fitting a location-scale family of the Tracy-Widom

distribution of order 1 to the test statistics computed from the permuted data. Finally, in

the third manuscript, I apply the concepts developed in the two other manuscripts to a data

analysis of targeted custom capture bisulfite methylation data. I show how PCEV can be

used in conjunction with the ideas in the second manuscript to test for a region-level asso-

ciation between the methylation levels of CpG dinucleotides and levels of anti-citrullinated

protein antibody (ACPA), an antigen thought to be a predictor of rheumatoid arthritis on-

set. In this study, the CpG dinucleotides are naturally grouped by design, and several of

these groups contain a number of methylation measurements that is larger than the sample

size.

vii



Abrégé

Les avancées technologiques récentes dans plusieurs domaines, dont la génomique et la neuro-

imagerie, ont contribué à une abondance de données de grande dimension et corrélées. Un

objectif analytique commun à ces domaines est l’étude des relations entre, d’une part, un

groupe de marqueurs génomiques ou des mesures anatomiques du cerveau, et d’autre part,

un ensemble de variables cliniques ou de phénotypes. Pour mettre à profit la corrélation entre

ces ensembles de mesures, et pour améliorer l’interprétabilité des mesures d’association, on

peut utiliser des méthodes de réduction dimensionnelle: un groupe de variables (ou les deux)

peut être représenté par un petit ensemble de variables latentes qui récapitule la structure

d’intérêt et capture l’association via une statistique choisie. Or, la grande dimension des

jeux de données contemporains amène de nombreux défis computationnels et théoriques, et

la majorité des techniques multivariées classiques ne peuvent être utilisées directement.

Cette thèse est composée principalement de trois manuscrits qui étudient les enjeux reliés

aux mesures d’association entre jeux de données de grande dimension. Dans le premier

manuscrit, j’explore les propriétés optimales d’une méthode de réduction dimensionnelle

connue sous le nom de Composante Principale de Variance Expliquée (PCEV). Cette méth-

ode recherche la combinaison linéaire des variables réponses qui maximise la proportion de

la variance qui peut être expliquée par les covariables d’intérêt. Ensuite, j’explique com-

ment PCEV peut être généralisé à une stratégie d’estimation efficace et computationelle-

ment simple pour les données de grande dimension (p > n). Cette généralisation repose

sur une hypothèse d’indépendance “par bloc”. Dans le second manuscrit, j’étudie le prob-

lème d’inférence pour les jeux de données de grande dimension: étant donné deux jeux de

données Y et X potentiellement de grande dimension, comment peut-on obtenir un test

d’association de manière computationnellement efficace? Plus précisément, le manuscrit

porte sur l’ensemble des méthodes multivariées pouvant être décrites comme un problème

Wishart double; PCEV, l’Analyse en Corrélations Canoniques (CCA), et l’Analyse de Vari-
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ance Multivarié (MANOVA) sont tous des exemples de problèmes Wishart double. Je mon-

tre comment des valeurs-p valides et de grande dimension peuvent être obtenues en util-

isant un estimateur empirique de la distribution nulle. Cet estimateur peut être construit

en commençant par un petit nombre de permutations, et ensuite en calibrant une famille

position-échelle de la distribution Tracy-Widom d’ordre 1 en utilisant les statistiques de

test calculées sur les données permutées. Finalement, dans le troisième manuscrit, j’utilise

les concepts développés dans les deux premiers manuscrits pour analyser des données de

méthylation obtenues par séquençage ciblé. Je démontre comment PCEV peut être combiné

aux idées développées dans le second manuscrit pour tester l’association entre les niveaux

de méthylation de l’ADN et les niveaux de l’anticorps pour les protéines anti-citrullinées

(ACPA), un antigène soupçonné d’être un prédicteur de la polyarthrite rhumatoïde, au

niveau des régions génomiques. Dans cette étude, les dinucléotides CpG sont naturelle-

ment regroupés, et plusieurs de ces groupes comportent plus de mesures de méthylation que

d’échantillons.
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Chapter 1

Introduction

Technological advances over the last decades have created a world drowning in data. As part

of the “big data” revolution, businesses and technology companies are collecting vast amounts

of transactional data on their customers and employees. By gathering as much information

as possible and building data science teams to make sense of it, these companies hope to

gain important insights into their business processes that can translate into a competitive

advantage. This arms race was encapsulated in an October 2012 article by the Harvard

Business Review that called data science the “sexiest job of the 21st century”.

A similar data revolution has occurred in biological sciences. This revolution was spear-

headed by the development of high-throughput technologies. Examples of these technologies

include microarrays and next-generation sequencing in genomics, and imaging technologies

in neuroscience. Due to these technological advancements, we are now able to collect vast

amounts of measurements for each experimental unit. Similarly, researchers hope that this

vast amount of biological and molecular data can be leveraged to further our understanding

of the aetiology of complex diseases

Unlike information systems that easily record transactional data in real-time and at a low

cost, the technologies used in biological sciences still have significant costs attached to them.
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As a result, a typical study will often limit data collection to a few hundred individuals, with

relatively few studies having larger sample sizes. This has led to the well-known “large p–

small n” problem; that is, the number of measurements can be much larger than the number

of experimental units. In statistics, this is generally referred to as high-dimensional data

problems, and these problems have generated a lot of interest and research over the last

decades.

A few examples may help illustrate the points above. Using microarrays and next-generation

sequencing platforms, researchers can measure gene expression for the whole genome, for tens

of thousands of genes and transcripts [Ozsolak and Milos, 2011, Zhao et al., 2014]. Using

these expression levels, they are then often interested in studying the relationship between

gene expression and disease propensity or other phenotypes. If a given gene is associated

with a disease, this gene becomes a potential target for a drug. Gene expression data can also

be used to investigate associations with genetic data; these studies are known as expression

Quantitative Trait Loci (eQTL) studies. A similar situation arises with DNA methylation

data. DNA methylation is the most commonly studied epigenetic mark, meaning that it is

a chemical modification of the DNA molecule that do not change the nucleotide sequence.

Like gene expression, DNA methylation can be measured over the entire genome, at mil-

lions of CpG dinucleotides. It explains a large part of tissue heterogeneity, and in some

cases, it controls access to the parts of the genome that can be transcribed and translated.

Therefore, evidence of association between methylation levels and a phenotype can again be-

come a potential treatment target. Similarly, methylation Quantitative Trait Loci (meQTL)

studies look at the association between DNA methylation levels and genetic data on Single

Nucleotide Polymorphisms (SNPs).

The field of neuroimaging has gone through parallel technological changes as genomics, and

accordingly there are parallels in the type of questions being posed and the methodological

challenges encountered. Researchers are interested in the relationship between anatomical
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features of the brain (e.g. cortical thickness, grey matter volume) and cognitive measure-

ments. Structural Magnetic Resonance Imaging (MRI) or Positron Emission Tomography

(PET) can be used to quantify structural features at tens of thousands of locations in the

human brain [Klein et al., 2009]. Researchers then look for evidence of association between

brain locations and phenotypes of interest. This evidence can in turn further our under-

standing of cognitive processes, as well as the aetiology of neurodegenerative diseases.

A newly emerging field, called imaging genetics, combines the two fields of genomics and

neuroimaging [Hariri et al., 2006]. Specifically, imaging genetics investigates the molecular

basis of brain structure and function. For example, researchers may be interested in the

association between structural brain features and genetic variation. To this end, they could

correlate MRI measurements with SNP data. As another example, they could investigate

the relationship between the same brain features and gene expression.

Historically, biological hypotheses about the relationship between a disease and a genomic

(or brain) feature were approached in a targeted manner, i.e. a set of candidate markers

for a particular disease or phenotype were selected a priori. However, with the recent tech-

nological advances, these hypotheses are now generally tested in an agnostic manner, i.e.

the number of potential candidates is mostly limited by the resolution and output of the

technology being used. Accordingly, the issue of multiple testing has become central to

statistical genetics and neuroimaging, with considerable work looking for improvements to

the classical Bonferroni correction. Specifically, researchers generally test for association be-

tween a molecular marker–or a brain region–and the phenotype of interest one at a time, and

they then need to account for multiple testing when assessing statistical significance. The

limitations of these approaches have been addressed in the literature [Visscher et al., 2017]:

all such tests of pairwise association have limited power to detect weak effects, even if they

are widespread; the correlation among the molecular markers and among the phenotypes is

largely ignored; and the computational burden is typically high.
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These problems are compounded when there are multiple phenotypes, and when we perform

these pairwise tests for two high-dimensional datasets (e.g. brain measurements and gene ex-

pression). From a biological standpoint, some natural groupings of these measurements often

arise. For example, some genes are co-regulated and act together as part of gene pathways.

The methylation status of nearby CpG dinucleotides tend to be highly correlated. Correla-

tion patterns between anatomical brain features are strongly driven by spatial distance and

neural connectivity. Translating this into statistical terms, we can construe these observed

biological phenomena as arising from a set of common latent processes. If we could test for

association between these latent variables and a phenotype of interest, we could dramatically

reduce the multiple testing burden and increase the signal-to-noise ratio. In turn, this would

lead to higher statistical power to detect biological associations.

In this thesis, I look specifically at a class of biological hypotheses that I call omnibus : hy-

potheses that pertain to the relationship between two sets of molecular, imaging, or pheno-

type features. From a statistical perspective, I look at omnibus hypotheses that are amenable

to a global association test: the association of interest is whether most or all variables in

one set demonstrate association with most or all variables in the other set. The approach I

take builds on the natural correlation present in these datasets. It uses dimension reduction

methods to project the information contained in a set of variables onto a set of latent vari-

ables of lower dimension. By summarising the information and leveraging the correlation

within these datasets, the objective is to increase power (compared to pairwise tests) while

keeping the computational burden relatively low.

The thesis is structured as follows: in the next chapter, I review the literature on dimension

reduction methods in high-dimensional data, with a focus on methods commonly used in

genomics and neuroimaging. I provide a general framework that includes these commonly

used dimension reduction methods, and I describe how sparsity has been the focus of di-

mension reduction in high dimensions. I also review the literature on null hypothesis testing
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in the context of double Wishart problems, which underlie several multivariate approaches.

The following three chapters present the three manuscripts that form the original contri-

butions of this thesis. First, I present a structured covariance estimator that leads to a

simple extension of the Principal Component of Explained Variance (PCEV) methodology

to high-dimensional data. The computational advantages are discussed, and I show how

the resulting approach (deemed “by block”) results in a higher powered approach than other

common high-dimensional methods. This manuscript has already been published [Turgeon

et al., 2018b]. Second, I present an empirical estimator of the null distribution of the largest

root statistic of double Wishart problems. I then show how this empirical estimator can be

used to perform high-dimensional inference using dimension reduction methods like Canoni-

cal Correlation Analysis (CCA) and PCEV. Third, I apply the concepts developed in the two

other manuscripts to a data analysis of targeted custom capture methylation data. I show

how PCEV can be used in conjunction with the ideas in the second manuscript to test for

association between groups of CpG dinucleotides and levels of anti-citrullinated protein an-

tibody (ACPA), an antigen thought to be a predictor of rheumatoid arthritis onset. Finally,

the last chapter summarises the contributions of the thesis and discusses future research

avenues.
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Chapter 2

Literature Review

As described in the introduction, this thesis focuses on (biological) omnibus hypotheses :

we are looking for evidence of a relationship between two sets of measures on the same

sample of individuals. More specifically, I will look at dimension reduction methods that try

to address these omnibus questions. Motivation comes from both statistical genetics and

neuroimaging, and therefore we expect high-dimensional, correlated variables for most types

of measures. I will look at both the issue of estimation, i.e. how to reduce the dimension

of the data, and the issue of inference, i.e. how can the reduced data provide evidence

for a biological relationship. This chapter provides a literature review of these two topics.

Section 2.1 addresses the first point. I start with an overview of common dimension reduction

methods used in both genomics and neuroimaging. I then present some existing estimation

frameworks, and I argue for a new one that encompasses most methods that are typically

used in neuroimaging and genomics; I call this new framework iterative optimisation. I

then survey existing approaches to reducing high-dimensional datasets. There is a strong

emphasis on sparsity, and I cover the theoretical justification for such emphasis.

In Section 2.2, I focus the attention on inference in the context of double Wishart problems.

I review that many multivariate approaches fall under this framework, and I show how
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inference can be performed by looking at the distribution of the largest root to such problems.

I then review several approaches to computing the distribution of this largest root under a

null hypothesis of interest, and I highlight their limitations.

2.1 Estimation

In what follows, let y and x be a p-dimensional and q-dimensional random vector, respec-

tively. Moreover, let Y be an n× p matrix and X, an n× q matrix. The rows of these two

matrices represent realisations of y and x, respectively, measured on the same n experimen-

tal units. We are interested in reducing the dimension of either Y or X (or both), while

describing their potential relationship.

2.1.1 Examples of dimension reduction methods

I start by providing an overview of several common dimension reduction methods. These

methods have been repeatedly used in genomics and neuroimaging studies to summarise

multivariate signals.

Principal Component Analysis

The canonical example of a dimension reduction method is Principal Component Analysis

(PCA). Indeed, this approach is almost as old as modern statistics, with early examples

coming from Pearson [1901] and Hotelling [1933]. I will describe two different approaches to

PCA.

Pearson’s approach to PCA is rooted in geometry. Indeed, Pearson was looking for the

optimal linear manifold approximation to the data. He argued that this can be achieved by

minimizing the reconstruction error. More specifically, let U be a k × p orthogonal matrix,

with k ≤ p. We can thus project our dataset Y = (y1, . . . , yn)
T onto a k-dimensional linear
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subspace:

yi → Uyi.

Conversely, given a p× k orthogonal matrix W , we get an embedding of Rk into the larger

space Rp:

z → Wz, z ∈ Rk.

By chaining these two transformations, we can compare the original data yi with its recon-

struction:

∥yi −WUyi∥2. (2.1)

If we are interested in minimizing the reconstruction error 2.1, it turns out that we can

focus on U = W T [Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]. To sum up, we are

interested in finding the orthogonal matrix W that minimizes the reconstruction error

min
W

n∑︂
i=1

∥yi −WW Tyi∥2.

This would lead to the best k-dimensional linear manifold approximation of the data. If we

let A = YTY, we can show that the reconstruction error is minimized exactly when W is

the matrix whose columns are the eigenvectors corresponding to the k largest eigenvalues of

A [Shalev-Shwartz and Ben-David, 2014, Theorem 23.2].

The other approach to PCA that I wish to highlight is due to Hotelling. He takes a different

approach than Pearson, looking for directions in the data with largest variance. In other

words, we are looking for the linear combination wTy with highest variance:

max
w

Var(wTy).

However, this optimisation problem is ill-defined: for every w ̸= 0, Var((2w)Ty) > Var(wTy),

and therefore there is no maximum. This problem can be alleviated by normalizing the
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objective function:

max
w

Var(wTy)

wTw
.

The solution to this and similar problems will be central to this thesis, and therefore I

encapsulate the solution in the following Proposition.

Proposition 1. Let A be a symmetric matrix and B a positive-definite matrix, where both

A and B are of dimension p. Consider the Rayleigh quotient

Q(w) =
wTAw

wTBw
.

The maximum value attained by this quotient corresponds to the largest root of the following

determinantal equation:

det(A− λB) = 0, (2.2)

and the vector that maximises Q(w) is the corresponding eigenvector.

Proof. First, we note that for any scalar C, we have

Q(Cw) =
(Cw)TA(Cw)

(Cw)TB(Cw)

=
C2wTAw

C2wTBw

=
wTAw

wTBw

= Q(w).

In other words, the objective function Q(w) is constant along one-dimensional subspaces of

Rp. Therefore, to maximise Q(w), we can restrict our search to a sphere around the origin.

For convenience, we select the sphere of radius 1 in the Mahalanobis distance induced by B.

That is, maximising Q(w) is equivalent to the following constrained optimisation problem:

max
w

wTAw, subject to wTBw = 1.
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We can rewrite this using the method of Lagrange multipliers: define

L(w, λ) = wTAw − λ(wTBw − a).

The critical points of L(w, λ) can be found via differentiation:

∂L(w, λ)
∂w

= 0 =⇒ 2wTA− 2λwTB = 0

=⇒ Aw = λBw.

Since the equation Aw = λBw is equivalent to Equation 2.2 above, this completes the

proof.

For PCA, since Var(wTy) = wT Var(y)w, we simply take A = Var(y) and B = Ip. Hence,

we can see that Hotelling’s formulation of PCA reduces to a classical eigenvalue problem.

We can obtain further components by repeating the above procedure with ỹ = y − yw̃w̃T ,

where w̃ = argmaxQ(w).

PCA is ubiquitous in science and machine learning. It is used in genetics to correct for

population stratification in association studies [Tiwari et al., 2008]. Combined with linear

regression, it is also a very popular way of extending regression to ill-conditioned covariate

matrices. Moreover, it is a very common preprocessing step with high-dimensional data.

An excellent reference about PCA, its extensions and applications, is the book by Jolliffe

[2002].

There are several ways one can use PCA to measure the association between two sets of

variables Y and X. First, a single component could be extracted from both sets and then

a univariate test of association between these two components could be performed. In the

presence of confounders, this univariate test could even be performed within a regression

framework for adjustment. If one wanted to extract more than one component from either
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X or Y, they could then also be used within a (potentially multivariate) regression framework

to test for association. However, the main PCA principle remains: dimension reduction of

both sets of variables is done completely independently from the other set, and therefore there

is no guarantee that the extracted components are relevant to the global association.

Independent Component Analysis

As we can see with both approaches to PCA, we obtain components that are uncorrelated. Of

course, this can be strictly weaker than requiring independence when the components are not

normally distributed. Motivated by this difference, Independent Component Analysis (ICA)

looks for a decomposition of the dataset into maximally independent linear components. Two

excellent sources for ICA are a review paper by Hyvärinen and Oja [2000], as well as a book

by the first author [Hyvärinen et al., 2009].

ICA is better described as a family of methods with a common goal: given a multivariate

variable Y, find a decomposition

Y = WZ

where W is a deterministic matrix and Z is a multivariate random variable, such that the

components of Z are statistically independent. It turns out that for identifiability purposes,

we must also impose a non-gaussian assumption: at most one column of Z can have a normal

distribution; otherwise, the mixing matrix W is not identifiable [Comon, 1994]. This turns

out to be a blessing in disguise, as it gives us better numerical criteria to optimise. Specifi-

cally, instead of looking for independent components explicitly, we can look for components

that are as “non-gaussian” as possible.

One approach to identifying non-gaussian components is via the kurtosis. Kurtosis is a

classical statistical measure defined as

kurt(X) = E(X4)− 3(E(X2))2.
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Since the fourth moment of a normal random variable is equal to 3(E(X2))2, we can see

that its kurtosis is zero; therefore, we can use the kurtosis as a measure of gaussianity. One

could therefore look for linear combinations of the data that maximise the empirical kurtosis.

However, since it depends on the fourth empirical moment, it is highly variable and very

sensitive to outliers.

A second approach to ICA uses entropy. Entropy is an information-theoretic metric that

measures the amount of information contained in a random variable. It is defined as fol-

lows:

H(X) = −
∫︂

p(x) log p(x)dx,

where p is the density function of X. It is a well-known result of information theory that

normal random variables maximise entropy among continuous distributions with a fixed

variance (see for example [Cover and Thomas, 2012, Chapter 12]). If we define negentropy

J(X) as the difference in entropy between a random variable X and a normal random variable

N with the same covariance structure, i.e.

J(X) = H(N)−H(X),

then J(X) can also be seen as a measure of gaussianity. By maximising J(X), we are in

effect maximising non-gaussianity.

However, estimating negentropy is difficult: using the definition directly would require an

estimate of the density function of X. Under some assumptions, it is possible to estimate

the negentropy using higher-order moments, for example:

J(X) ≈ 1

12
E(X3)2 +

1

48
kurt(X)2

(see Jones and Sibson [1987]). Again, we run into similar problems as above, and in general

the domain of applicability of the above approximation is rather limited.
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Hyvärinen [1998] proposed new approximations of the negentropy based on a maximum-

entropy principle; this principle leads to the following general approximation form:

J(X) ≈
K∑︂
i=1

αi (E(gi(X))− E(gi(Z)))
2 .

In the equation above, the αi’s are positive constants, the functions gi are nonquadratic

transformations, the variable X is assumed to be standardized, and Z is a standard normal

variable. For example, we could use a single nonquadratic transformation g and weight

α1 = 1 to approximate the negentropy:

J(X) ∝ (E(g(X))− E(g(Z)))2 .

Two common choices for g are

g(u) = log coshu, g(u) = − exp(−u2/2).

The real breakthrough for ICA came with the introduction of the FastICA algorithm by Hyväri-

nen [1999]. It is a fixed-point iteration scheme that seeks to maximise the negentropy as

defined above using the approximation based on nonquadratic transformations. Let ġ be

the derivative of the transformation g. For estimating a single component, the FastICA

alternates between two steps until convergence:

1. Let w̃ = E(zġ(wT z))− E(g̈(wT z))w;

2. Normalise w = w̃/∥w̃∥.

Finally, a third approach to ICA uses mutual information. The mutual information of a set

of variables y = (y1, . . . , yp) is defined as

I(y) =

p∑︂
i=1

H(yi)−H(y).
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Unpacking the definition of entropy, we see that mutual information is equivalent to the

Kullback-Leibler divergence between the joint density and the product of the marginal den-

sities. Therefore, unlike the two previous settings, this third setting is explicitly looking for

components that are as maximally independent as possible.

If we assume that Y = WZ is such that W is invertible and the columns of Z are uncorrelated

with unit variance, we can show that [Cover and Thomas, 2012]

I(Y) = C −
p∑︂

i=1

J(yi),

for some constant C. In other words, by minimizing the mutual information, we are also

maximizing the non-gaussianity of the components.

ICA can be, and typically is, used as a stand-in for PCA when the non-gaussianity as-

sumption for the latent features seems more natural [Mantini et al., 2010, Castro et al.,

2016]. Therefore, when studying the relationship between two sets of variables, it suffers

from the same drawbacks as PCA: the dimension of the datasets is reduced without using

their dependence relationship. ICA is most commonly seen in neuroimaging, psychometrics,

and finance, and it is rarely used in genomics (but for an example, see Teschendorff et al.

[2011]).

Redundancy Analysis

As highlighted above, PCA and ICA are dimension reduction techniques that reduce the

dimension of a single dataset, without using any information about the possible relationship

between two datasets. Redundancy Analysis (RDA) is a first step towards reducing dimen-

sion while capturing the dependency between Y and X. The best reference on the topic

is Legendre and Legendre [2012, Chapter 11].

Consider the following setting: assume that the relationship between y and x can be repre-
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sented via a linear model:

y = Byx+ e, (2.3)

where B is a p× q matrix of regression coefficients, and e ∼ Np(0,VR) is a vector of residual

errors. RDA seeks a linear combination wTy that maximises the redundancy index :

r(w) = Var(wTBx).

Note that for an estimate B̂ of B, we have

r(w) = Var(wT B̂x)

= wT Var(B̂x)w

= wT Var(ŷ)w.

Therefore, we can see that maximising the redundancy index is equivalent to performing

PCA on the fitted values ŷ.

RDA was first developed in the field of psychometrics as an alternative to Canonical Corre-

lation Analysis (CCA) [Van Den Wollenberg, 1977]. It has gained some traction in the field

of ecology, but it is essentially unheard of in the fields of genomics and neuroimaging.

Principal Component of Explained Variance

This dimension reduction approach will be presented in more detail in Chapter 3. Its pre-

sentation is repeated here using notation designed to highlight similarities and differences

with the other dimension reduction methods discussed in this section. Principal Component

of Explained Variance (PCEV) is very similar to RDA1. It starts from the same assumption

about the relationship between y and x. However, instead of maximising r(w), it seeks a
1Some researchers even conflate the two methods; for example, see Lin et al. [2012]
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linear combination wTy that maximises the proportion of explained variance:

R2(w) =
Var(wTBx)

Var(wTy)
.

In contrast to RDA, PCEV was actually developed within the field of genetics, under the

name of Principal Component of Heritability (PCH) [Ott and Rabinowitz, 1999]. Indeed,

in family studies, we can typically decompose the total variance of a phenotype into a

component coming from the genetic model and a residual component. The ratio of the genetic

variation over the total variation is known as the heritability (in the broad sense) [Visscher

et al., 2008]. In Turgeon et al. [2018b], I advocated for a different name, for two main reasons:

1) the concept of heritability can be misleading in the context of population studies, and 2)

I showed that the domain of applicability is actually much broader than data about genetic

variation. Therefore, I shall henceforth only use the term PCEV for this dimension reduction

method.

In Proposition 1, we saw that the maximum value of R2(w) corresponds to the largest

solution to a generalized eigenvalue problem. As I show next, to find the corresponding

eigenvector, we can use a series of Eigenvalue Decompositions (EVDs). Recall the notation

of Proposition 1: A is a symmetric matrix and B a positive-definite matrix, where both A

and B are of dimension p. First, we perform an eigenvalue decomposition of B:

B = ΦBΛBΦ
T
B.

Since B was assumed positive definite, all diagonal elements of ΛB are positive (and the off-

diagonal elements are zero), and therefore the matrix Φ̃B = ΦBΛ
−1/2
B is well-defined. Now,

consider the matrix

Ã = Φ̃T
BAΦ̃B.
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It is easy to see that it is also symmetric, and therefore we can decompose it as

Ã = ΦAΛΦ
T
A,

where ΦA is orthogonal and Λ diagonal. Let Φ = ΦBΛ
−1/2
B ΦA. We have

ΦTAΦ = ΦT
A(Λ

−1/2
B ΦT

B)A(ΦBΛ
−1/2
B )ΦA

= ΦT
AΦ̃

T
BAΦ̃BΦA

= ΦT
AÃΦA

= Λ.

Simultaneously, we also have

ΦTBΦ = ΦT
AΛ

−1/2
B (ΦT

BBΦB)Λ
−1/2
B ΦA

= ΦT
AΛ

−1/2
B ΛBΛ

−1/2
B ΦA

= ΦT
AΦA

= I.

In other words, we have a system of linear equations

ΦTAΦ = Λ, ΦTBΦ = I.

This is equivalent to the generalized eigenvalue problem AΦ = BΦΛ. In other words, the

column of Φ corresponding to the largest diagonal element of Λ maximises the corresponding

Rayleigh quotient.

When B is positive semidefinite, we can still solve the generalized eigenvalue problem by

using a truncated EVD. For more details, see Appendix B.1.
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Canonical Correlation Analysis

In both RDA and PCEV, the role of y and x is asymmetric: we first started with the

assumption that their relationship follows a linear model, with x as covariates and y as

response variables. In contrast, CCA treats y and x symmetrically. It seeks two linear

combinations wTy and vTx that are maximally correlated with each other:

max
w,v

Corr(wTy, vTx)2.

To solve this optimisation problem, let w̃ = Var(y)1/2w, ṽ = Var(x)1/2v. We can then

write

Corr(wTy, vTx)2 =
(wT Cov(y,x)v)2

(wT Var(y)w)(vT Var(x)v)

=
(w̃T Var(y)−1/2Cov(y,X)Var(x)−1/2ṽ)2

(w̃T w̃)(ṽT ṽ)

Let P = Var(y)−1/2Cov(y,x)Var(x)−1/2. By the Cauchy-Schwartz inequality, we have

(w̃TP ṽ)2 ≤ (w̃TPP T w̃)ṽT ṽ,

and therefore we have

Corr(wTy, vTx)2 ≤ w̃TPP T w̃

w̃T w̃
=

wT Cov(y,x)Var(x)−1Cov(x,y)w

wT Var(y)w
.

In other words, as for PCEV, to optimise Corr(wTy, vTX)2, we need to solve a generalized

eigenvalue problem, where A = Cov(y,x)Var(x)−1Cov(x,y) and B = Var(y) (cf. Proposi-

tion 1 and the preceding subsection).
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Partial Least Squares

Partial Least Squares (PLS) was first introduced by Wold [1985] as a way to improve pre-

diction accuracy in the context of linear regression with high multicollinearity. The starting

point is the power method for PCA: to compute the first principal component of a matrix

M = YTY, we start with a random vector v0, and then iteratively normalise the product

M iv0 until convergence. As I described earlier, PCA completely ignores the relationship

between Y and X when reducing the dimension of Y. However, Wold suggested a mod-

ification of the power method that incorporates information about X. This algorithm is

called Nonlinear Iterative Partial Least Squares (NIPALS), and it is presented here as Algo-

rithm 1.

Algorithm 1 NIPALS
1: Center and scale both X and Y; set E1 = X, F1 = Y. Set convergence limit ϵ.
2: for i = 1 to I do
3: Randomly initialize ui.
4: repeat
5: Set wi = ET

i ui/∥ET
i ui∥.

6: Set ti = Eiwi.
7: Set ci = F T

i ti/∥F T
i ti∥.

8: Set ui = Fici.
9: until ∥ti,new − ti,old∥ < ϵ

10: Set bi = tTi ui and pi = ET
i ti.

11: Set Ei+1 = Ei − tip
T
i and Fi+1 = Fi − bitic

T
i .

12: end for

As described in Frank and Friedman [1993], the solution obtained from Algorithm 1 also

solves the following optimisation problem:

max
u,c

Var(uTy) Corr(uTy, cTx)Var(cTx).

Intuitively, we are therefore jointly solving two PCA problems and one CCA problem, cor-

responding to the three terms in the expression above. We can therefore see PLS as a

compromise between Principal Component Regression (PCR) and CCA.
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For more details about PLS, its history, extensions and methods, see Abdi [2010].

Linear Discriminant Analysis

Finally, I will look at a slightly different example. Linear Discriminant Analysis (LDA)

has a dual purpose: it is a dimension reduction approach, but also a classification method.

Accordingly, the linear combinations of Y that LDA seeks are those that maximise the

separation between the different classes. More precisely, assume that we observe nk p-

dimensional variables Yk, for k = 1, . . . , K. In other words, the observations belong to one

of K groups, and we can encode this via the vector X, where Xi = k whenever observation

i belongs to group k. Let Ŷk and Sk be the sample mean and covariance of the k-th

group, respectively, and let Ŷ be the overall sample mean. Consider the following two

matrices:

SB =
K∑︂
k=1

(Ŷk − Ŷ)(Ŷk − Ŷ)T ,

SW =
K∑︂
k=1

Sk.

Similarly to PCEV and CCA, LDA considers a Rayleigh quotient:

D(w) =
wTSBw

wTSWw
.

The value ŵ that maximises D(w) is called the first discriminant. A total of K − 1 discrim-

inants can be extracted by adding the constraint that each subsequent w̃ that maximises

D(w) must also be SW -orthogonal to the previously extracted discriminants.

By imposing distributional assumptions on Y, we can then use these discriminants to con-

struct an optimal classifier. For more details, see Friedman et al. [2001].
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2.1.2 Existing frameworks

In the previous section, I surveyed several common dimension reduction approaches. To

facilitate the discussion in the later sections of this chapter, it would be helpful to think of

these methods as part of a general framework. To this end, I start by presenting two general

frameworks for dimension reduction commonly encountered in the literature: Generalized

Low-Rank Models (GLRM), and Sufficient Dimension Reduction (SDR). I show that they

have different scopes, and I argue that these frameworks do not quite capture the methods

that we typically encounter in genomics and neuroimaging. Based on this, I present a third

framework called iterative optimisation.

Generalized Low-Rank Models

A recent paper by Udell et al. [2016] provided a very general framework describing low-rank

matrix approximations. This framework encompasses many popular matrix decomposition

methods, e.g. Singular Value Decomposition (SVD), regularized PCA, non-negative matrix

factorization, but it also includes more surprising unsupervised approaches like k-means

clustering. Suppose we wish to approximate Y = (Yij) by a matrix Ỹ of rank k ≤ min(n, p);

for example, the matrix Ỹ could be the reconstruction (in p dimensions) of the data Y after

reducing its dimension to k. This is equivalent to approximating Y by the matrix product

W TZ, where W is a matrix of dimension k × n and Z is of dimension k × p. In its more

general form, the GLRM corresponds to the following optimisation problem:

min
∑︂

(i,j)∈Ω

Lij(w
T
i zj, Yij) +

m∑︂
i=1

ri(wi) +
n∑︂

j=1

r̃j(zj), (2.4)

where

• Ω ⊆ {1, . . . , n} × {1, . . . , p} is a set of pairs (i, j) corresponding to entries of Y ;

• Lij : R× R → R+ are given loss functions for i = 1, . . . , n and j = 1, . . . , p;
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• ri, r̃j : Rk → R ∪ {∞} are regularizing functions;

• wi is the i-th column of W , and zj is the j-th column of Z.

The minimisation problem in Equation 2.4 is very general, and therefore I will go through

some examples in the hope of improving clarity. The simplest example is that of truncated

SVD; it can be shown that it is the solution to the following optimisation problem:

min
⃦⃦
Y −W TZ

⃦⃦2

F
; (2.5)

for an early instance of this result, see Eckart and Young [1936]. Here, I use ∥·∥2F to denote

the squared Frobenius norm; this matrix norm corresponds to the sum of the squares of the

matrix entries. Therefore, to relate truncated SVD to the framework 2.4, we simply note

that both regularisation functions are identically zero, and the loss functions are all equal to

the quadratic loss.

An interesting feature of the Frobenius norm is that, if Y contains missing values, we can

simply omit them from the sum. In this way, we can actually use truncated SVD as a

data imputation method. Without missing values, the solution to Equation 2.4 involves

only elementary linear algebra. However, in the presence of missing data, the optimisation

problem becomes more computationally involved [Troyanskaya et al., 2001]. By requiring

the loss function to be separable over the entries of Y as above, GLRM seeks to retain this

ability to impute missing data.

Another advantage of customising the loss function to the entries of Y is that each entry

could potentially receive different weights. An example of GLRM that has this feature is

weighted PCA [Srebro and Jaakkola, 2003]. Yet another advantage of an entry-specific loss

function is to allow for matrix decompositions when Y contains heterogeneous data types:

for example, if some columns of Y contain continuous data and other columns, binary data,

one could choose a mixture of quadratic and logistic loss [Schein et al., 2003].
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For more examples of GLRMs, and for details about fitting procedures, I refer the reader

to Udell et al. [2016].

Even though GLRM is very general, it only performs dimension reduction on a single dataset

Y. For example, we can recover PCA by choosing regularisation functions ri, r̃j that are

identically zero and setting Lij(w
T
i zj, Yij) =

(︁
Yij − wT

i zj
)︁2. However, none of the other

methods above fit this framework.

Sufficient Dimension Reduction

Sufficient Dimension Reduction provides an elegant framework for dimension reduction by

providing a natural definition. First, I assume that p = 1, i.e. y is a single random vari-

able; the setting where p > 1 will be addressed later in this section. SDR considers linear

transformations of x that contain all the information about the joint distribution of x and

y. More precisely, it seeks a q × r matrix B (with r ≤ q) such that

y ⊥⊥ x | BTx. (2.6)

It is not hard to see that if B satisfies the condition above, so does BA for any non-singular

r × r matrix A [Li, 2018, Chapter 2.2]. Therefore, the identifiable parameter in SDR is not

the matrix B itself, but rather its column space span(B). A subspace V of Rq is called an

SDR subspace if V = span(B) for a matrix B that satisfies Property 2.6.

Several well-known regression models satisfy the property 2.6. Generalized Linear Models

are such examples: for a given link function g, we have

g (E (y | x)) = βx.

In other words, the relationship between y and x is encapsulated in the linear predictor
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βx2. Semiparametric regression models, such as the Multiple Index Model, also satisfy the

conditional independence property above [Yin et al., 2008].

Under very weak conditions on the distribution of x, the intersection of two SDR subspaces is

again an SDR subspace [Yin et al., 2008]. This result leads to the following definition:

Definition 1. Let y and x be as above, and let A be the set of all corresponding SDR

subspaces; since Rq is an SDR subspace, the set A is non-empty. The subspace

Sy|x =
⋂︂
V ∈A

V

is called the central SDR subspace.

Therefore, the ultimate goal of SDR is to estimate the central SDR subspace. This can be

construed as an analogue to finding a minimal sufficient statistic in Fisherian statistics.

The first example of a statistical methodology whose explicit goal was to estimate the cen-

tral SDR subspace is Sliced Inverse Regression (SIR) [Li, 1991]. This method relies on the

observation that, whereas the semiparametric regression problem E(y | x) suffers from the

curse of dimensionality, the inverse regression E(x | y) can be approached through uni-

variate smoothing techniques. The connection between this inverse regression and SDR is

summarised in the following result:

Theorem 1. [Li, 1991, Theorem 3.1] Let B be such that Sy|x = span(B), and assume that

x follows an elliptical distribution. The centred inverse regression curve E(x | y)− E(x) is

contained in the linear subspace spanned by BTΣx, where Σx denotes the covariance matrix

of x.
2Strictly speaking, this is not quite strong enough to lead to conditional independence. Accordingly, this

weaker form is called Sufficient Dimension Reduction for Conditional Mean. For more details, see Cook
et al. [2002]
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In other words, by estimating the centred inverse regression curve and looking at the subspace

it spans, we obtain a “lower bound” on the central subspace. To estimate the centred inverse

regression curve, Li [1991] advocates for a simple method that relies on computing the sample

mean of x over slices of the range of y. But he also concedes that any smoothing technique

could be used.

The result above only guarantees that the centred inverse regression curve is contained in

the central SDR. Indeed, this inclusion may be strict: as shown by Cook and Weisberg

[1991], in the presence of symmetric dependence, SIR will only uncover a proper subspace of

Sy|x. Cook and Weisberg suggested a new method called Sliced Average Variance Estimate

(SAVE) that relies on second order relationships between x and y that can circumvent

the issues arising from symmetric dependence. Moreover, under some mild conditions on

the joint distribution of y and x, SAVE is guaranteed to recover the whole central SDR

subspace [Li, 2018, Theorem 5.3].

The ideas behind SIR and SAVE have led to a plethora of methodological papers. Inverse

regression can be tackled parametrically or through the use of kernel-machine regression [Zhu

et al., 1996]. Hypothesis tests have also been developed to estimate the dimension of the

central SDR subspace [Li, 2018, Chapter 9]. For high-dimensional data, Li [2007] suggests

using shrinkage estimation to obtain a sparse representation Bs of the central SDR subspace.

Alternatively, Cook et al. [2007] show how to perform SDR without the need of inverting

large matrices, extending SIR and SAVE to high-dimensional settings.

Some common dimension reduction approaches can be seen to fit the SDR framework. PCR,

whereby PCA is performed on the vector x and then followed by regression of y on a

selected number of principal components, is such an example [Adragni and Cook, 2009];

univariate PLS regression provides another example [Helland, 1990]. To see this, let SX be

the sample covariance estimate for the covariates x, and let SXY be the sample estimator

of the covariance Cov(x,y) (recall that we assumed y has dimension one, and therefore
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SXY is a vector as well). Consider regressing y on x in two steps: first, we reduce the

dimension of x to r ≤ q using a q × r projection matrix B; second, we regress y on the

reduced covariates BTx. Now, if we let B be the first r eigenvectors of SX , we obtain PCR;

if we let B = (SXY , SXSXY , . . . , S
r−1
X SXY ), we obtain PLS [Helland, 1990]. Under some

distributional assumptions on x, the subspace span(B) obtained from PCR is a consistent

estimator for an SDR subspace S [Cook et al., 2008]; we obtain a similar consistency result for

PLS under some assumptions on the relationship between Cov(x,y) and the eigenstructure

of Cov(x) [Naik and Tsai, 2000].

However, there is no obvious link between SDR and other common multivariate analysis

methods such as CCA, LDA and Multivariate Analysis of Variance (MANOVA). This is

related to the fact that, even though Property 2.6 can easily be extended to a multivariate

y, methods such as SIR and SAVE cannot be easily adapted to this multivariate setting.

Indeed, they both suffer from the curse of dimensionality that they were trying to avoid in

the first place by performing inverse regression.

2.1.3 Iterative optimisation framework: a new perspective on di-

mension reduction

The two frameworks described above have a number of advantages and limitations. GLRM

is very flexible and computationally mature; however, it is only restricted to dimension

reduction of a single set of variables at a time, with no obvious way of using the relation-

ship between two sets Y and X. SDR is theoretically very satisfactory, with a natural

approach to dimension reduction; however, the extension to multivariate Y brings compu-

tational challenges, and it is not clear how the theoretical framework leads to an estimation

framework. Moreover, both frameworks exclude some very common dimension reduction

techniques: GLRM does not include PLS, and SDR does not include CCA (cf. Table 2.1).

For these reasons, I present here an alternative framework. This framework includes all
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Method GLRM SDR Iterative Optimisation
PCA Yes Yes3 Yes
ICA No No No
RDA No No Yes
PCEV No No Yes
CCA No No Yes
PLS No Yes Yes
LDA No No Yes

Table 2.1: Breakdown of which dimension reduction methods are included within the GLRM,
SDR, and Iterative Optimisation frameworks.

methods presented in Section 2.1.1, except ICA.

For the purpose of this thesis, I will mainly consider dimension reduction performed as a

series of optimal linear projections onto a one-dimensional subspace. More precisely, I am

looking for a p-dimensional vector w̃1, such that for a given function

f : Rp → R,

we have

w̃1 = argmax
w

f(wTy;x, θ), subject to ∥w∥M = 1,

where ∥·∥M is the norm induced by the Malahanobis distance corresponding to a positive

definite matrix M (cf. Proposition 1). The subsequent components can be extracted by

repeating the optimisation with ỹ = y − w̃1w̃
T
1 , which induces an orthogonality constraint

(again with respect to the matrix M).

Some further comments are required:

• We present the framework as a maximisation one, but this is done without loss of

generality. Indeed, we could easily replace a function f ′ that needs to be minimised by

its negative −f ′ and turn this into a minimisation problem.

• We allow for the function f to depend on another set of variables x and thus take
3More specifically, PCR and not PCA is an example of SDR.
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advantage of the relationship between y and x. We also allow for extra parameters

θ that potentially describe this relationship. For example, θ could be the regression

parameter describing the linear relationship between y and x in RDA and PCEV.

• The same framework could be used to perform dimension reduction of both y and x:

first, replace y by (y,x) and extend the domain of f to Rp+q. If the matrix M used

to define the Malahanobis distance is block-diagonal, with blocks M1,M2 of dimension

p, q, respectively, then we have

∥(w, v)∥M = ∥w∥M1
+ ∥v∥M2

.

This framework is quite general, and indeed it includes most linear regression frameworks. It

also includes all common dimension reduction methods seen in neuroimaging and genomics

presented in Section 2.1.1, with the exception of ICA. Indeed, since the goal of ICA is

(joint) independence between the components, it is intrinsically a joint dimension reduction

approach. FastICA does provide an algorithm for minimising the negentropy that computes

a single component at a time; however, the algorithm is presented as a fixed-point iterative

scheme, and it is not clear that the solution also optimises a single criterion. Therefore, I do

not consider ICA within the iterative optimisation framework.

For all other dimension reduction methods discussed above, Table 2.2 provides the corre-

sponding objective function f .

2.1.4 Dimension reduction and high-dimensional data

By showing how the above methods fit the iterative optimisation framework, I was able

to highlight another common trait: these methods all rely on the estimation of sample

covariance matrices. However, when the number of features p is larger than the sample size

n, these matrices are ill-conditioned. Moreover, these sample covariance matrices are no
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Method Objective function
PCA f(wTy) = Var(wTy)

RDA f(wTy) = Var(wTBTx)

PCEV f(wTy) = Var(wTBTx)
Var(wTy)

CCA f([u, v]T [y,x]) = Corr(uTy, vTx)

PLS f([u, c]T [y,x]) = Var(uTy) Corr(uTy, cTx)Var(cTx)

LDA f(wTy) = wTSBw
wTSWw

Table 2.2: Objective function for the dimension reduction methods described in Section 2.1.1.

longer consistent estimators of the corresponding true covariance matrices for large p. This

can be seen, for example, as a consequence of the work by Marčenko and Pastur [1967] on

the distribution of the eigenvalues of the sample covariance. This inconsistency result also

transfers to the eigenvectors:

Theorem 2 (Johnstone and Lu [2009]). Assume that we have n observations {yi}ni=1 from

a p-dimensional model of the form

y = νρ+ σZ,

where ρ ∈ Rp, ν ∼ N(0, 1), and Z ∼ Np(0, I). Let ρ̂ be the eigenvector corresponding to

the largest root of the sample covariance matrix. Furthermore, assume that the limiting

signal-to-noise ratio is bounded away from zero:

lim
n→∞

∥ρ∥2/σ2 = ω > 0.

Let c = limn→∞ pn/n be the limit of the ratio of the dimension to the sample size; note that

we let the dimension grow with the sample size. Then almost surely

ρ̂Tρ

∥ρ̂∥∥ρ∥
→ (ω2 − c)+

ω2 + cω
, as n → ∞.
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In particular, (ω2 − c)+/(ω
2 + cω) < 1 if and only if c > 0, and therefore ρ̂ is a consistent

estimator of ρ if and only if p/n → 0.

As an extreme case of the above result, when c ≥ ω2, the vectors ρ̂ and ρ are asymptotically

orthogonal. In other words, the estimator ρ̂ contains no information whatsoever about

its corresponding estimand ρ. This result also extends to multicomponent factor analytic

model Paul [2007].

Sparsity constraints

The solution for recovering consistency in high dimensions is through a sparsity constraint:

we generally assume that the number of latent variables is much smaller than the dimension

of the observed variables to which they give rise. It is difficult to overstate the importance

of Theorem 2; indeed, and as we shall see, it underlies most approaches to high-dimensional

dimension reduction. Under their one-component model, Johnstone and Lu [2009] suggest

the following algorithm for sparse PCA:

1. Transform the data using a wavelet transformation, where sparsity is more likely to

hold (under some conditions);

2. Retain the k most variable transformed variables;

3. Perform PCA on the remaining variables;

4. Filter out the noise in principal components using hard thresholding;

5. Return to the original representation of the data.

However, it is not clear that the wavelet transform is always the best transformation for

achieving sparsity. Indeed, it is also not clear how the optimal transformation can be ob-

tained.

In Jolliffe et al. [2003], the authors also argue that sparsity can improve the interpretation
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of the derived principal components. To this aim, they introduce Simplified Component

Technique-Lasso (SCoTLASS). Drawing inspiration from Tibshirani [1996], they propose to

solve the PCA optimization problem

minVar(wT
i Y), subject to wT

i wi = 1, wT
i wj = 0 for i ̸= j

with an extra L1-condition on the loading vectors:

p∑︂
ℓ=1

|wiℓ| ≤ t

for some tuning parameter t > 0. Although this optimization is appealing in its simplicity,

it is no longer a convex optimization problem, and therefore it converges slowly and is prone

to converging to local optima.

Zou et al. [2006] improves on both Jolliffe et al. and Johnstone & Lu by proposing a com-

putationally efficient algorithm for recovering sparse principal components. Their approach

leverages Pearson’s geometric view of PCA. Specifically, they start by recasting PCA as a

ridge regression problem:

Theorem 3 ([Zou et al., 2006]). Let yi be the i-th row of the matrix Y. Suppose we are

considering the first k principal components. For any λ > 0, let

(Ŵ , Û) = argmin
W,U

n∑︂
i=1

∥yi −WUTyi∥2 + λ

k∑︂
j=1

∥uj∥2 (2.7)

subject to W TW = Ik,

where uj is the j-th column of U . Then ûj is proportional to the j-th loading vector for the

j-th principal component, j = 1, . . . , k.

If we add the constraint W = U and set λ = 0, we recover Pearson’s formulation of PCA.
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Therefore, we can construe the addition of the ridge penalty as a counterbalance to the

relaxation of the matrix equality constraint W = U , and we can still recover (up to a mul-

tiplicative constant) the original principal components. To obtain a sparse PCA algorithm,

the authors suggest adding an L1-penalty to Equation 2.7. They also provide an alternating

minimisation algorithm that is computationally efficient.

Sparse dimension reduction beyond PCA

Witten et al. [2009] go even one step further than Zou et al. [2006]. Their starting point

is the observation that SVD can be used to construct optimal rank r approximations of a

matrix. More specifically, let ℓ denote the rank of Y, and let U,D, V be such that

Y = UDV T ,

with D diagonal. If we let uk, vk be the k-th column of U, V , respectively, and dk be the k-th

element on the diagonal of D, we have

r∑︂
k=1

dkukv
T
k = argmin

Ŷ

⃦⃦⃦
Y − Ŷ

⃦⃦⃦2

F
,

where Ŷ ranges over all rank r ≤ ℓ matrices of dimension n × p, and ∥·∥2F is the squared

Frobenius norm. In the case of r = 1, the minimisation problem above is equivalent to

max
u,v

uTYv, subject to ∥u∥22 = 1, ∥v∥22 = 1. (2.8)

The authors thus define the rank-1 Penalized Matrix Decomposition (PMD) as an extension

of Equation 2.8 in which they add two penalty terms P1 and P2:

max
u,v

uTYv, subject to ∥u∥22 ≤ 1, ∥v∥22 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2. (2.9)

32



They provide an efficient alternating optimisation algorithm that relies on the biconvexity

of Equation 2.9.

When P1, P2 are chosen as L1-penalties on u, v, rank-1 PMD can be seen as yet another

approach to sparse PCA. Indeed, the authors show how they can recover Jolliffe et al.

[2003]’s SCoTLASS, and they thus provide an efficient algorithm for its computation. They

also show how their algorithm relates to Zou et al. [2006]’s sparse PCA.

Furthermore, PMD can also be used to obtain a sparse version of CCA; this is achieved

by performing PMD on XTY (assuming X and Y have mean zero), and by replacing the

constraints ∥u∥22 ≤ 1, ∥v∥22 ≤ 1 by uTXTXu ≤ 1, vTXTXv ≤ 1. Witten et al. [2009] also

contains a discussion of other approaches to sparse CCA, along with a comparison of these

approaches with PMD.

Inspired by Zou et al. [2006], Chun and Keleş [2010] proposed a sparse approach to PLS.

Their ideas are similar: they recast the PLS optimization problem by augmenting the orig-

inal equation with the addition of a second parameter, and then they regularise this new

equation by adding an L2 constraint. A sparse solution is then obtained by adding a second

penalty term, an L1-penalty. More precisely, they aim to solve the following optimization

problem:

(ŵ, ĉ) = argmin
w,c

{︁
−κwTXTYYTXw + (1− κ)(c− w)TXTYYTX(c− w) + λ1∥c∥1 + λ2∥c∥2

}︁
subject to wTw = 1,

where κ is a tuning parameter.

Similarly to Zou et al. [2006], Chun and Keleş [2010] show that this optimisation problem

can be solved efficiently by alternating between optimising over w and c separately.
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Fang et al. [2014b] proposed a similar solution to obtain sparse loadings for PCEV. They

suggest optimising the following objective function:

R2
λ(w) =

Var(wTBX)

Var(wTY) + λ∥w∥21
.

Under a sparsity assumption on the loadings, the authors prove a consistency result about

this regularized PCEV. However, this objective function is difficult to optimise. For this

reason, Fang et al. [2014b] suggest approximating it with

R̃2
λ(w) = Var(wTY) + λ∥w∥21 + γ

(︁
Var(wTBX)− 1

)︁2
.

This objective function is still non-convex, but the authors provide an efficient optimisation

algorithm based on coordinate descent.

Sparsity through structured covariance estimation

The different approaches to sparsity described above all use a similar approach: they add

an L1 constraint to the optimisation problem to obtain sparse loadings. Crucially, which

components should be zero is not set a priori, and indeed it is learned from the data. There

is another approach to sparsity that does not add a penalty term to the objective function:

sparsity via structured estimation. We give two examples, both due to Bickel & Levina.

In Bickel et al. [2008], the authors study banded estimators of the covariance matrix: if

M = (mij) is a p-dimensional matrix, for any integer 0 ≤ k < p, we can define a banding

operator via

Bk(M) = (mij · 1(|i− j| ≤ k)).

In other words, some of the off-diagonal entries are set to zero. If Σ̂ is the sample covariance

matrix, Bickel & Levina suggest to estimate the population covariance using Σ̂k = Bk(M).

They then prove consistency results in the operator norm; this norm is equal to the largest
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eigenvalue of the matrix. Therefore, these optimality results also translate to the principal

components derived from Σ̂k. In turn, this leads to good performance when PCA is performed

on these estimators.

Alternatively, Bickel and Levina [2008] argue for the use of a thresholding operator on the

covariance matrix: for any s ≥ 0, we define

Ts(M) = (mij · 1(|mij| ≥ s)).

In other words, every entry of M whose absolute value is less than s is set to zero. Similar to

above, the authors suggest to estimate the population covariance using Σ̂s = Ts(M). Again,

consistency results in the operator norm are derived.

As we have seen above, a large number of methodological solutions to dimension reduc-

tion with high dimensional data build on the success of lasso regression [Tibshirani, 1996].

They impose an L1-constraint on the loading vectors, thus ensuring a sparse solution to

the corresponding optimisation problem. Other approaches enforce sparsity via structure

(e.g. thresholding and banding). Bickel et al. [2008] provide further examples of this ap-

proach.

Similarly, analogues of ridge regression have been used as well to address issues of high

dimensionality; for example, see Vinod [1976], Leurgans et al. [1993], Ramsay [2006], Wang

et al. [2007a], Allen et al. [2013], Aflalo and Kimmel [2017], Wang and Huang [2017]. Through

regularisation of the loadings, these methods address some of the limitations of the classical

methods; however, they typically do not have the same interpretability advantages as their

sparse counterparts.

One important detail I have yet to mention is that all methods above depend on one or

more tuning parameters. Often, these tuning parameters control the amount of regularisa-

tion occurring within the optimization problem. In other cases, like in Bickel & Levina’s
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approaches, the tuning parameter controls the amount of banding, or at which point small

values in the estimate matrices should be set to zero. All authors recommend some form of

resampling to estimate these parameters; for example, in sparse PCA, cross-validation can

be used to find the value of λ that minimizes the (out-of-sample) reconstruction error. For

more details, see Friedman et al. [2001, Chapter 7].

Tuning these parameters using resampling imposes an additional computational burden.

This burden can become especially acute when we use dimension reduction over hundreds

or thousands of sets of variables.

In the first manuscript, presented in Chapter 3, I provide an example of a dimension re-

duction approach to high-dimensional data that has a much lower computational cost. The

method presented is another example of sparsity via structured estimation. I achieve this

goal by taking advantage of the natural correlation structure present in genomics and neu-

roimaging data, as well as some properties of the PCEV optimisation problem under block

independence. Crucially, my approach does not require any tuning parameter, and it is

therefore computationally efficient.

2.2 Inference

Next, I turn our attention to the issue of assessing the evidence of an association between

Y and X. Within the context of dimension reduction, this is often reformulated in terms of

the relationship between components wTY and uTX. To this aim, I will focus our discussion

to the framework of Null Hypothesis Significance Testing (NHST). This is by far the most

common inferential framework used in genetic epidemiology and neuroimaging.

On the simpler end of the spectrum, methods like PCA and ICA that reduce dimension

of each set of variables independently of one another can often rely on classical, univariate

tests of association. For example, the set Y could be reduced to a single component wTY

36



through PCA. We could then use univariate linear regression and an F-test to assess the

significance of the relationship between wTY and X. However, there is no guarantee that

these tests will have any power to detect an association between the two sets of variables.

This is due to the dimension reduction being performed without using any information about

the relationship. With high-throughput technologies, where technical artifacts and tissue-

heterogeneity can drive most of the variance in a dataset, it can become almost impossible

to detect any association between Y and X.

At the other end of the spectrum, for high-dimensional variants of CCA and PLS, the ana-

lytical distribution of the test statistics can sometimes be difficult to derive, or even approx-

imate. Typically, they can only be derived with strong distributional assumptions on Y and

X, and they are often restricted to the classical setting of p/n → 0. This problem is espe-

cially acute with models that seek sparse loadings for the components (cf. Section 2.1.4). In

these settings, the most convenient approach is often to use a permutation strategy [Nichols

and Holmes, 2002]. Briefly, a permutation test is a resampling approach to estimating the

null distribution of our test statistic. The observation labels of Y or X (but not both) are

permuted multiple times, and for each iteration the test statistic is computed on the scram-

bled data. The validity of the procedure relies on the fact that under the null hypothesis

of no association between Y and X, we lose no information whatsoever by breaking the

link between observation i in Y and observation i in X. As one can imagine, these tests

are very versatile, due to their minimal assumptions. However, this flexibility comes with a

heavy computational burden. This is especially true in the context of multiple hypothesis

tests, where the number of permutations needs to be large enough to allow a significance

assessment even after correction for multiple testing.

In this thesis, I focus on inference performed under the double Wishart setting. This setting

provides a very powerful inferential framework for some of the dimension reduction methods

discussed above, but also for other multivariate techniques. I first give a short review of

37



Union-Intersection Test (UIT), which forms the main link between dimension reduction

methods and the double Wishart setting. I then give a general overview of this setting, with

a short collection of examples. Finally, I review the different approaches to estimating the

null distribution of the test statistic.

2.2.1 Union-Intersection Tests

In many hypothesis-testing problems in multivariate analysis, there is no uniformly most

powerful (unbiased) test. Accordingly, there has been several approaches advocated for

NHST, each with their advantages and disadvantages. Two of the most common approaches

are the classical Likelihood Ratio Test (LRT) and the UIT. The former test is well-known

from introductory mathematical statistics courses: we look at the ratio of the maximum

likelihood under an alternative and a null hypothesis, and large values of this ratio provide

evidence against the null hypothesis. The latter approach does not require an alternative

hypothesis, but it is probably not as familiar to the average reader. I start with a defini-

tion:

Definition 2 ([Mardia et al., 1979, Chapter 5]). A UIT for the null hypothesis H0 is a test

whose rejection region R can be written as a union of rejection regions Ra for component

hypotheses H0a, and where H0 can be written as

H0 = ∩aH0a.

To help clarify this definition, I will give an example following Mardia et al. [1979]. Let Y be

an n× p matrix whose rows are normally distributed Np(µ,Σ). We assume that Σ is known,

and we are interested in the null hypothesis H0 : µ = 0. For any p-dimensional, non-random

vector w, consider wTY. We know that it also follows a (univariate) normal distribution

N(wTµ,wTΣw). The null hypothesis H0 induces a similar null hypothesis for all nonzero
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vector w:

H0,w : wTµ = 0.

Moreover, if H0,w is true for all w ̸= 0, we can infer H0 must be true. In other words, we can

view H0 as the intersection of several univariate null hypotheses H0,w:

H0 = ∩w ̸=0H0,w.

Now, since wTY is univariate and normally distributed, we can easily build a test for H0,w

by looking at the ratio zw = wTY
wTΣw

. We can then build a rejection region

Rw = {zw | z2w > c2}

for some critical value c. By combining these multiple rejection regions, we can get a rejection

region for the multivariate null hypothesis H0 as a union of the rejection regions Rw:

R = ∪w ̸=0Rw.

We can simplify this further by noting that we do not reject the null hypothesis if and only

if z2w ≤ c2 for all w ̸= 0; this is equivalent to not rejecting H0 if and only if

max
w

z2w ≤ c2.

Of course, more complicated settings will lead to a more complex rejection region for the

UIT. But the same principles apply broadly.

It is worth noting that the above maximisation highlights how natural UIT can be in the

context of dimension reduction. Indeed, we can see that z2w above could be replaced by

the criterion being maximised in both PCEV and CCA. For each possible component wTY,
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we get a univariate test, and the solution to the dimension reduction problem corresponds

to when R2(w) or Corr(uTY, vTX)2 is maximised. Following the UIT framework described

above, we see that we can construct a global test statistic by looking at the maximum of

R2(w) or Corr(uTY, vTX)2 over all possible linear combinations.

2.2.2 Double Wishart Problems

As I discussed in Section 2.1.1, both PCEV and CCA can be performed by optimising a

Rayleigh quotient, where the numerator and denominator depend on the matrices Y and X.

Moreover, Proposition 1 described how the optimisation of this Rayleigh quotient is related

to a determinantal equation of the form

det(A− λB) = 0, or (2.10)

det(A− λ(A+B)) = 0.

For both PCEV and CCA, assuming the null hypothesis of no association between Y and

X holds, we can derive two important consequences:

• A and B are Wishart-distributed with the same scale matrix Σ;

• A and B are independent.

These two consequences are at the heart of what is called the double Wishart problem. More

generally, we have the following definitions.

Definition 3. 1. Let Z be an n × p normal data matrix: each row is an independent

observation from Np(0,Σ). A p × p matrix A = ZTZ is then said to have a Wishart

distribution A ∼ Wp(Σ,m).

2. Let A ∼ Wp(Σ,m) be independent of B ∼ Wp(Σ, n). Then the largest root λ̂ of

Equation 2.10 is called the largest root statistic and a random variate having this
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distribution is denoted θ1(p,m, n), or θ1,p for short.

We could have a similar definition for the distribution θi,p, i = 1, . . . ,min(p, n) of all roots

of Equation 2.10. However, for the purpose of this thesis, I will only focus on the largest

root.

The UITs for PCEV and CCA correspond to this largest root statistic. Moreover, note that

we can see both PCA and RDA as limiting cases of the double Wishart problem, where B

converges to a (non-stochastic) identity matrix. For this reason, the limiting case is usually

referred to as the single Wishart problem. The distribution of its largest root corresponds to

the distribution of the largest eigenvalue of a Wishart matrix.

The double Wishart problem goes beyond dimension reduction, and indeed it underlies many

multivariate techniques (e.g. MANOVA, tests of equality of covariances). Johnstone [2009]

contains many examples of double Wishart problems, and I also review some of them in

Chapter 4.

2.2.3 Largest Root Distribution

It turns out that hypothesis testing performed using LRT typically uses test statistics

constructed using all roots from the determinantal equation 2.10 (e.g. Wilk’s Lambda in

MANOVA); whereas testing performed using UIT typically uses only the extreme eigenval-

ues (e.g. Roy’s Largest Root in MANOVA), as seen above. Accordingly, I will begin our

discussion of the largest root distribution with the joint distribution of all roots to the de-

terminantal equation 2.10 (in its second form). This distribution is given by [Muirhead,

2009b]:

f(θ1, . . . , θp) = C

p∏︂
i=1

(1− θi)
(m−p−1)/2θ

(n−p−1)/2
i

∏︂
i<j

|θi − θj|,
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where

C =
πp2/2

Γp

(︁
1
2
p
)︁ Γp

(︁
1
2
(n+m)

)︁
Γp

(︁
1
2
n
)︁
Γp

(︁
1
2
m
)︁ .

Recall that Γp(·) is the multivariate Gamma function:

Γp(a) = πp(p−1)/4

p∏︂
j=1

Γ(a+ (1− j)/2).

This result has been known for several decades, and indeed it is a simple consequence of

a change of coordinates. However, going from the joint distribution of the roots to the

marginal distribution of the largest root increases the level of complexity tremendously. In

turn, this complexity has led to many computational challenges. This has already been

discussed elsewhere (see for example Johnstone [2008]), but for the sake of completeness I

review it here and add some other, more recent, developments.

The first important step was provided by Constantine [1963], who showed that the marginal

distribution can be expressed in terms of a hypergeometric function with matrix argu-

ment:

P (θ1,p < x) = C1,px
pm/2

2F 1

(︃
m

2
,
−(n+ p+ 1)

2
;
m+ p+ 1

2
;xI

)︃
,

where

C1,p =
Γ
(1)
p

(︁
m+n
2

)︁
Γ
(1)
p

(︁
p+1
2

)︁
Γ
(1)
p

(︁
m+p+1

2

)︁
Γ
(1)
p

(︁
n
2

)︁ .
When n + p + 1 is a positive, even integer, P (θ1,p < x) can actually be expressed as a

terminating series involving zonal polynomials [Muirhead, 2009b, Corollary 10.6.9].

Koev and Edelman [2006] showed how the hypergeometric functions with a matrix argu-

ment can be efficiently computed by leveraging recursion relations of Jack functions (which

are a generalization of zonal polynomials). However, these approximations are relatively

accurate only for small values of p, n,m. For more information about the algorithmic and

computational approaches to estimating hypergeometric functions with a matrix argument,
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see Dumitriu and Koev [2008] and the references therein.

Using a different approach, Gupta and Richards [1985] used results from De Bruijn [1955] to

show that the hypergeometric function evaluated at a scalar multiple of the identity matrix is

related to the Pfaffian of a matrix whose entries are expressible in terms of simpler, classical

hypergeometric functions. Recall that the Pfaffian of a skew-symmetric matrix A is the

polynomial P that satisfies the relationship P(A)2 = det(A). This result was then used to

show that the marginal distribution P (θ1,p < x) can itself be expressed as the Pfaffian of a

matrix whose entries are double integrals.

This theoretical result was recently implemented by Butler and Paige [2011]. The authors

give a series expansion of the double integrals, and they also provide numerical results about

their implementation. Unfortunately, just as the work of Koev and Edelman [2006], the

computational approach is limited to small values of p, n,m. Furthermore, in some cases,

these computations can take several hours, making them impractical for large datasets such

as is common neuroimaging and genomic studies.

Building on the work of De Bruijn [1955] and Gupta and Richards [1985], and also on his

previous work on the largest eigenvalue of Wishart matrices [Chiani, 2014], Chiani [2016]

exploited the Pfaffian relationship to provide a computationally efficient and exact way of

computing the distribution P (θ1,p < x). His approach, based on recursions, is summarised

in the following theorem:

Theorem 4 ([Chiani, 2016, Theorem 1]). Let B(x;α, β) =
∫︁ x

0
tα−1(1 − t)β−1dt be the in-

complete beta function. The CDF of the largest root θ1,p is proportional to the Pfaffian of a

skew-symmetric matrix:

P (θ1,p < x) = C
√︁

det(A(x)),

where C is given above. When p is even, the elements of the p × p skew-symmetric matrix
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A(x) are given by

aij(x) = E(x;m+ j,m+ i)− E(x;m+ i,m+ j), i, j = 1, . . . , p,

where

E(x; a, b) =
∫︂ x

0

tα−1(1− t)nB(t; b, n+ 1)dt.

When p is odd, the elements of the (p+ 1)× (p+ 1) skew-symmetric matrix A(x) are given

by as above for 1 ≤ i, j ≤ p, and

ai,p+1(x) = B(x;m+ i, n+ 1), i = 1, . . . , p

ap+1,j(x) = −aj,p+1(x), j = 1, . . . , s

ap+1,p+1(x) = 0.

Note that aij(x) = −aji(x) and aii(x) = 0.

Moreover, the elements aij(x) can be computed iteratively, starting from the beta function,

without numerical integration of series expansion (see Algorithm 2).

However, one caveat that Chiani fails to mention is that his algorithm is numerically unstable

for large values of p. This is due to the numerical underflow and overflow problems arising

from the computation of both the constant C and the determinant of A. To my knowledge,

accurate calculations require arbitrary-precision arithmetic, which can be computationally

demanding. This is the approach I used when implementing Algorithm 2 in the R package

rootWishart using the boost and eigen C++ libraries (see also Chapter 4).

In a landmark paper, Johnstone [2008] showed that accuracy and computational efficiency

for the largest root distribution could be attained by first transforming the largest root and

then estimating its distribution using the Tracy-Widom distribution of order 1. His main
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Algorithm 2 CDF of the largest eigenvalue of Roy’s test
Input: s,m, n, x
Output: P (θ1,p < x)
A = 0
for i = 1 → p do
bi = 0.5B(x;m+ i, n+ 1)2

for j = i → p− 1 do
bj+1 =

(m+j)bj−B(x;2m+i+j,2n+2)

m+j+n+1

ai,j+1 = B(x;m+ i, n+ 1)B(x;m+ j + 1, n+ 1)− 2bj+1

end for
end for
if p is odd then

for i = 1 → p do
ai,p+1 = B(x;m+ i, n+ 1)

end for
end if
A = A−AT

C = π0.5p
∏︁p

k=1
Γ(0.5(k+2m+2n+p+2))

Γ(0.5k)Γ(0.5(k+2m+1))Γ(0.5(k+2n+1))

return P (θ1,p < x) = C
√︁
|A|

result is given below:

Theorem 5 ([Johnstone, 2008]). Assume A ∼ Wp(Σ,m) and B ∼ Wp(Σ, n) are indepen-

dent, with Σ positive-definite. Let λ be the largest root of Equation 2.10. As p,m, n → ∞,

we have
logitλ− µ

σ

D−→ TW (1),

where TW (1) is the Tracy-Widom distribution of order 1 (cf. Tracy and Widom [1996]), and

µ, σ are defined as follows:

µ = 2 log

(︃
tan

(︃
φ+ γ

2

)︃)︃
σ3 =

16

(m+ n+ 1)2
(︁
sin2(φ+ γ) sinφ sin γ

)︁−1
,
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where

sin2(γ/2) =
min(p, n)− 1/2

m+ n+ 1

sin2(φ/2) =
max(p, n)− 1/2

m+ n+ 1
.

The Tracy-Widom distribution of order 1 is defined by

F1(s) = exp

{︃
−1

2

∫︂ ∞

s

q(x) + (x− s)q2(x)dx

}︃
, s ∈ R,

where q solves the nonlinear Painlevé II differential equation:

q̈(x) = xq(x) + 2q3(x);

asymptotically, we have q(x) ∼ Ai(x), where Ai is the Airy function [Hastings and Mcleod,

1980]. This distribution was found by Tracy and Widom [1996] as the limiting law of the

largest eigenvalue of an n×n Gaussian symmetric matrix. The distribution can be computed

numerically to the desired degree of accuracy, or it can itself be estimated using a scaled and

shifted gamma distribution [Chiani, 2014].

However, a limitation shared by both Chiani [2016] and Johnstone [2008] is that they do

not apply to settings where the dimension p of the Wishart matrix A is larger than its

degrees of freedom m. Unfortunately, this is almost always the case with high-dimensional

data. In Chapter 4, I show that the result from Johnstone [2008] can still be leveraged

in high dimension to construct an empirical estimator of the largest root distribution. I

provide numerical evidence that after transformation, the largest root distribution can still

be approximated by a Tracy-Widom distribution, and I show how using a small number

of permutations, we can estimate the location-scale parameters of this distribution. In
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this way, we are still able to construct valid p-values in high dimensions while keeping the

computational burden relatively low.

In this chapter, I reviewed some of the most frequently used dimension reduction methods in

genomics and neuroimaging. I presented two general frameworks that included only subsets

of these methods. Therefore, I suggested using a third one. This framework, that I call

iterative optimisation, also naturally extends to a regularised setting by using a regularised

objective function f . In this way, it also accommodates several of the high-dimensional

approaches described above. Chapter 4 introduces an empirical estimator based on the

Tracy-Widom distribution to compute valid high-dimensional p-values. Finally, in Chapter 5,

I apply these methods to the analysis of DNA methylation and anti-citrullinated protein

antibody (ACPA) levels in individuals from a nested case-control study.
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Chapter 3

Principal component of explained

variance: an efficient and optimal data

dimension reduction framework for

association studies

Preamble to Manuscript 1. As I discussed in Chapter 2, most approaches to dimension

reduction in high-dimensional data involve some form of regularisation. The amount of

regularisation, or penalisation, is typically controlled by at least one parameter that needs

to be selected by the user. The approach normally recommended for tuning this parameter

is cross-validation: for a range of values, we compute a cross-validated loss function (e.g.

mean squared error, log-likelihood), and we select the parameter value that minimises this

loss.

Although this approach has desirable theoretical properties, it imposes two important bur-

dens on the user:

• The cross-validation can be computationally intensive.
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• Sample sizes in genomic and neuroimaging studies can be small, making the data

splitting unstable.

The first point becomes particularly acute when we want to perform hypothesis testing

and control for multiple tests. Indeed, the null distribution of the test statistics is often

unknown for regularised estimators, and therefore researchers usually use permutation tests

to obtain p-values. And when performing multiple tests, as is often the case in genomic and

neuroimaging studies, the number of permutations required to reject any null hypothesis at

a given significance level increases with the number of tests.

The purpose of the manuscript presented in this chapter was to develop a dimension reduction

method that did not require any tuning parameter. As it turns out, I was able to prove that

PCEV can be broken down in two stages when the covariance matrix is block-diagonal: 1)

perform PCEV on each block separately; 2) then perform PCEV again on the components

obtained at the first stage. This approach was partly motivated by the correlation patterns

observed in DNA methylation data: the methylation levels of nearby CpG dinucleotides are

highly correlated [Eckhardt et al., 2006]. Moreover, as described in detail below, this two-

stage approach is quite robust to violations of this block-diagonal assumption, and therefore

it can be used much more broadly.
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Abstract

The genomics era has led to an increase in the dimensionality of the data collected to inves-

tigate biological questions. In this context, dimension-reduction techniques can be used to

summarize high-dimensional signals into low-dimensional ones, to further test for association

with one or more covariates of interest. This paper revisits one such approach, previously

known as Principal Component of Heritability and renamed here as Principal Component

of Explained Variance (PCEV). As its name suggests, the PCEV seeks a linear combina-

tion of outcomes in an optimal manner, by maximising the proportion of variance explained

by one or several covariates of interest. By construction, this method optimises power but

limited by its computational complexity, it has unfortunately received little attention in the

past. Here, we propose a general analytical PCEV framework that builds on the assets of

the original method, i.e. conceptually simple and free of tuning parameters. Moreover, our

framework extends the range of applications of the original procedure by providing a compu-

tationally simple strategy for high-dimensional outcomes, along with exact and asymptotic

testing procedures that drastically reduce its computational cost. We investigate the merits

of the PCEV using an extensive set of simulations. Furthermore, the use of the PCEV ap-

proach will be illustrated using three examples taken from the epigenetics and brain imaging

areas.
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3.1 Introduction

In the omics era, a considerable amount of data is now routinely collected to investigate the

relationships between a set of covariates of interest (X) and genetic, molecular, or clinical

outcomes (Y ). As such, a substantial proportion of the methodological research developed

in the last decade has focused on the numerous statistical challenges and computational

issues highlighted by the joint analysis of such high-dimensional correlated data. If we

imagine a spectrum of models indexed by dimensionality, at one end, we have a model that

attempts to accommodate all variables at once. This may lead to results that are difficult

to interpret. At the other extreme of this spectrum, we have univariate models which treat

each variable separately while ignoring the others. This approach may miss subtle signals

arising from complex biological interactions and correlations. An intermediate approach

would therefore either identify a priori relevant groups of variables Y on which to perform

the analysis or reduce the dimensionality of the problem by summarising the data into

meaningful components. A popular example of dimension reduction is Principal Component

Analysis (PCA). This method seeks linear combinations of the original data that explain the

maximum amount of variance.

In contrast to studies with high-dimensional covariates, here we focus on studies where the

goal is to investigate the association between a set of (possibly high dimensional) correlated

outcomes and one or more covariates of interest. In this context, several methods integrating

both data reduction and association analysis simultaneously have been developed. For ex-

ample, in a variant of Principal Component Regression (PCR), a PCA analysis is performed

on the set of outcomes Y , producing a smaller number of components. These components

are then used in an association test with the covariates of interest X. Although being widely

used in practice, this method has very poor power in cases where the outcomes showing the

greatest variability—hence those captured by the first principal components—are not the

ones associated with the covariates of interest. Since outcomes strongly influenced by the
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environment could easily have much larger variability than outcomes influenced by a Single

Nucleotide Polymorphism (SNP), this is of particular concern in genetic studies. Therefore,

PCA in this context is likely to find components where environmentally driven traits have

the highest weights (since they are highly variable), whereas the weights associated with

genetically-controlled traits may be very small if they are less variable across individuals. If

an association analysis is then performed between such components Ỹ and genotype data

X, it is likely that no association will be detected. Since the data reduction step in PCR is

performed independently of the covariates, the low power in such situations is not surprising;

as a consequence, other methods have been developed to jointly perform both data reduction

and association analysis. For example, Partial Least Squares (PLS) regression [Abdi, 2010],

Canonical Correlation Analysis (CCA) [Härdle and Simar, 2007], and Linear Discriminant

Analysis (LDA) [Friedman, 1989], are widely used component-based methods that can be

employed to find, simultaneously, the “best” components describing two sets of variables

(e.g. outcomes and covariates). This is achieved by maximising the association between

them. The optimisation criterion for association differs between these methods: while CCA

is based on maximising correlations, PLS optimises covariances. Methods of this type are

very powerful by construction and have been extended in several ways to accommodate high-

dimensional variables using regularisation techniques or sparsity measures. However, such

extensions heavily depend on tuning parameters, and formal testing procedures are currently

lacking.

Although PLS and CCA have been gaining popularity in genomics, these methods were

originally developed in other fields and mainly for prediction purposes. Ott and Rabinowitz

[1999] developed a closely related method implementing similar ideas to PLS and CCA,

specifically for a genetic context. Using family data and with the aim of performing linkage

analysis between multiple correlated outcomes Y and SNP genotypes X, the idea was to

find the best linear combination of outcomes (i.e. a component) maximising the heritability

at the SNP tested. This method, termed Principal Component of Heritability (PCH), has
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unfortunately received little attention although it was later extended [Wang et al., 2007b, Klei

et al., 2008, Fang et al., 2014a] to the more general setting of population-based studies and

high-dimensional outcomes based on regularisation or sparsity techniques. Since heritability

is simply defined in PCH as the proportion of variance in the outcomes Y explained by the

SNP covariate, it can be seen as a method belonging to the family of PLS and CCA based

on another criterion, i.e. the proportion of variance in the outcome variables explained by

the covariates. Since the term “heritability” can be misleading in the context of population-

based studies, and since the concept underlying PCH can also be used in a general setting

outside genetics, we have renamed this approach Principal Component of Explained Variance

(PCEV). We note that this method is also closely related to dual-scaling [Nishisato, 1995],

originally introduced in the psychometrics literature.

In this paper, we present a completely new analytical framework based on the PCEV con-

cept that copes smoothly with data of very high dimension at the outcome level, includes

valid hypothesis tests, leads to interpretable results, and yet is computationally efficient.

This approach is implemented in an R package, pcev, available on the Comprehensive R

Archive Network (CRAN). Specifically, we first show that unlike the competing, similar

approaches discussed earlier, PCEV has mathematical properties that allow inclusion of

very high-dimensional outcomes without the need to rely on variable selection strategies

that require selecting tuning parameters. Secondly, we show that PCEV can be extremely

computationally efficient, unlike its competitors, by developing an exact testing procedure

that does not rely on permutations. Therefore, this approach is entirely feasible for use in

genome-wide studies (or studies with very high-dimensional response variables), such as we

frequently encounter today.

We then investigate the merits of the PCEV using an extensive set of simulations. In the

large n—small p setting, we focus our discussion on methods that do not require tuning

parameters and those for which a testing framework is fully developed. For this reason,
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we discarded from our comparison methods such as sparse PLS [Chun and Keleş, 2010],

regularized CCA [Vinod, 1976, Leurgans et al., 1993], and the projection regression model

proposed by Lin et al. [2012]. On the other hand, in the high-dimensional setting (i.e. small

n—large p setting), we compare our extension of PCEV to commonly used approaches, such

as lasso [Tibshirani, 1996] and sparse PLS (sPLS); these two methods do involve tuning

parameters. We show that PCEV outperforms all these methods, while also being much

more computationally efficient. Finally, the use of the PCEV approach is illustrated in three

settings: i) using DNA methylation data derived from whole genome bisulfite sequencing

(Y ), we test if a region near the BLK gene on chromosome 8 is differentially methylated in

B-cells compared to T-cells or monocytes; ii) using DNA methylation microarray data (Y ),

we perform a genome-wide gene-based association analysis of methylation with respect to

cigarette smoking status; and iii) using brain imaging traits derived from [18F]Florbetapir

PPositron Emission Tomography (PET) scans (Y ), we perform an association test between

amyloid-β accumulation and two sets of covariates: Alzheimer’s disease status and a set of

SNPs located near the APOE gene.

3.2 Method

The general methodological framework aims to simultaneously test a (possibly large) set of

phenotypes or outcomes Y, against a set of covariates X. The method is evaluated through

an extensive simulation study and then applied to three independent datasets.

3.2.1 General theoretical PCEV framework

We consider the following setting: let Y be a multivariate phenotype of dimension p (e.g.

methylation values at p CpG dinucleotides, or brain imaging measures at p locations in the

brain), let X be a q-dimensional vector of covariates of interest (e.g. smoking, cell type or

SNPs) and let C be an r-dimensional vector of confounders (e.g. age or sex). We assume
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that the relationship between Y and X can be represented via a linear model

Y = BX+ ΓC+ E, (3.1)

where B and Γ are p × q and p × r matrices of regression coefficients for the covariates

of interest and confounders, respectively, and E ∼ Np(0,VR) is a vector of residual errors.

This model assumption allows us to decompose the total variance of Y, conditional on C,

as follows:

Var(Y | C) = Var(BX | C) + Var(E)

= BVar(X | C)BT +VR

= VM +VR.

where VM = BVar(X | C)BT is the model variance component and VR is the residual

variance component. PCEV seeks a linear combination of outcomes, wTY, which maximises

the ratio h2(w) of variance being explained by the covariates X:

wPCEV := argmax
w

h2(w),

where

h2(w) =
Var(wTBX | C)

Var(wTY | C)
=

wTVMw

wT (VM +VR)w
.

The original PCH, as presented by Ott and Rabinowitz [1999] relied on the same variance

decomposition and the same optimization problem described above. However, genetic data

from families were used to estimate the genetic variance component VM . In contrast, Klei

et al. [2008] and Lin et al. [2012] extended the idea to population data using a linear model

assumption.

It has been shown that wPCEV is the solution to the generalised eigenvector problem VMw =
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λVRw [Ott and Rabinowitz, 1999], and therefore standard linear algebraic results can be

used to get a closed form solution wPCEV. Although there are some similarities between PCA

and PCEV since both methods seek a linear combination of outcomes optimising a given

criterion, we recall that PCA reduces the dimension of Y by looking for a linear combination

of its components with maximal variance, independently of the covariates X. Furthermore,

an important difference between PCA and PCEV is in the number of components one can

extract. While the number of components to select in PCA is usually left to the user, and the

maximum number of extracted components is bounded above by p, the maximum number of

components that can be extracted for PCEV is bounded above by the number of covariates

q. Therefore, if we are only interested in one covariate, only one PCEV can be extracted;

this follows from considering the rank of the matrix V−1
R VM .

3.2.2 PCEV with high-dimensional data

When the number of response variables p is larger than the sample size n, a naïve imple-

mentation of PCEV will fail. To ensure the uniqueness of the solution to the maximisation

process, the invertibility of the residual matrix VR is required; therefore, an accurate es-

timation of the matrix VR requires n > p. This limitation has led to the introduction of

regularisation techniques for the estimation of w, reminiscent of ridge regression [Hoerl and

Kennard, 1970] and lasso [Tibshirani, 1996]. We stress once again that these methods require

parameters that are computationally expensive to compute. For this reason, we propose a

novel alternative, namely a block approach to the estimation of PCEV. Assume we can par-

tition Y into blocks (or clusters) such that the number of components in a given block is

small enough, i.e. smaller than n. We can then perform PCEV and get a linear combination

Ỹj of the traits belonging to the jth block, for each block j = 1, . . . , b. We then obtain a

new multivariate pseudo-phenotype Ỹ = (Ỹ1, . . . , Ỹb), where each Ỹj is of dimension one.

We can then perform PCEV again on Ỹ. Since the result is a linear combination of linear

combinations, it is itself a linear combination of the original traits Y. Although one might
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think that this stepwise approach is an ad-hoc extension of the original PCEV approach,

it has nonetheless a very appealing and relevant mathematical property, described in the

following result:

Theorem 1. Assume one can partition the outcomes Y into blocks in such a way that

blocks are uncorrelated (i.e. outcomes lying in different blocks are uncorrelated). Then the

linear combination (PCEV) obtained from the traditional approach and that obtained from

the stepwise block approach described above are equal.

The proof of this result is given in Appendix A.1. Of course, if such a partition does not

exist, there will generally be a difference between the two estimation procedures. However,

through a series of simulations and analyses of data sets, we will show that the discrepancy

is small. Therefore, comparable conclusions can be achieved even in the presence of some

dependence between the blocks.

3.2.3 Test of significance

The PCEV methodology was first presented in the context of family-based studies, and the

lack of a proper significance testing framework may have hindered its adoption in population-

based studies. Klei et al. [2008] discussed such a framework, but their approach relies on

computationally intensive sample splitting and resampling. In fact, here we are able to

show that there is an analytic test of the null hypothesis H0 : h2(w) = 0 that requires

no resampling. This test is based on the largest eigenvalue λ of the matrix V−1
R VM , a test

statistic used in multivariate analysis of variance [Everitt and Dunn, 1991]. When X consists

of a single covariate, it is also known as the Wilks statistics; it can be shown that under the

null hypothesis (︃
n− p− 1

p

)︃
λ ∼ F (p, n− p− 1),
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where F (ν1, ν2) is the Fisher-Snedecor distribution, with degrees of freedom ν1 and ν2 (see

Appendix A.2). The two matrices VR and VM are typically estimated during the classical

PCEV process, which then allows us to compute the test statistic. When multiple covariates

of interest are included in the model (e.g. multiple indicator variables for cell type com-

position, or multiple SNPs in a given genomic region), the statistic λ is better known as

Roy’s largest root test statistic (also called Roy’s union-intersection test statistics) [Rencher

and Christensen, 2012]. The asymptotic distribution of a suitable transformation of λ was

derived by Johnstone [2008]. More details are given in Appendix A.3.

We note that the Wilks and Roy’s largest root test statistics both rely on the assumption of

normality of the outcomes, and the former also requires n− p− 1 > 0 (corresponding to the

second degree of freedom of the F test). If these assumptions are not satisfied, permutation

tests provide an adequate control of the Type I error and can be used as an alternative.

3.2.4 Variable importance

The PCEV framework described above allows reduction of the multiple testing burden by

performing only a single test for a set of outcomes. If the test is significant, it is of great

interest to identify the set of outcomes contributing the most to the global association de-

tected. Here, we use the Variable Importance on Projection (VIP) defined for outcome j

as VIPj = Cor(Yj, YPCEV), where YPCEV = wT
PCEV(Y1, . . . , Yn). This VIP measure can be

signed (as a correlation) or unsigned (in absolute value). In the case of PCEV-block, the

VIP measure is defined in the same way, i.e correlation between the original outcomes and

the final PCEV component. We note that the VIP should be used as a means of ranking

the contributions of each individual outcome to the overall association; as such, the actual

values obtained are not necessarily interpretable. We provide examples of how to use the

VIP values in the Results and Discussion sections below.

3.2.5 Defining blocks
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Theorem 1 allows us to extend PCEV to the setting where there are more response variables

than observations (p ≫ n), through the use of blocks. In practice, the researcher needs to

define these blocks prior to analysis, and correlation-based clustering methods (e.g. hierar-

chical and k-means clustering) can be used to obtain blocks that are minimally correlated

with one another. However, in some settings, prior knowledge about the response variables

can be leveraged in defining blocks. For example, DNA methylation at neighbouring CpG

dinucleotides is known to be highly correlated [Eckhardt et al., 2006]. Therefore, in studies

of DNA methylation, CpG nucleotides could be grouped based on distance. In the data

analyses below, we give examples of both approaches.

3.2.6 Simulation study

Power and type I error of the PCEV approach are evaluated through extensive simulations

assuming a sample size n = 500. In all simulations, a single continuous covariate X ∼ N(0, 1)

is simulated and no confounder variables are included in the analysis. The multivariate

outcomes Y are simulated under model (3.1) using a multivariate normal distribution of the

residuals with variances equal to 1 and a block correlation structure made of five blocks of

equal size. This correlation structure in VR is governed by parameters ρw, defined as the

within-block correlation and ρb, defined as the between-block correlation. The regression

coefficients Bk (k = 1, . . . , p), corresponding to the kth outcome, are chosen to match the

values of h2 for each outcome, i.e. the proportion of variance explained by the covariate X,

according to the relationship B2
k = h2/(1 − h2). When multiple outcomes are associated

with the variable X, we assume that each outcome explains the same proportion of variance

h2.

We compare the PCEV approach with a PCR analysis and a PCEV-block approach. The

PCR approach was selected for comparison because it does not involve any calibration (e.g.

sparse methods typically require a tuning parameter) and because it provides a convenient

framework for significance testing. In the PCEV approach, p-values are computed using the
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asymptotic test described above. In PCR, the first principal component of Y is extracted

and then tested for association with the covariate. Finally, the PCEV-block approach is

applied by using the same blocking structure as in the simulated data (i.e. five blocks). This

analytical strategy is chosen to evaluate the performance of the PCEV-block approach in

the situation where the mathematical property of independence between blocks is verified.

Furthermore, we chose scenarios where the PCEV-block approach is not necessary (p ≪ n),

allowing us to compare the performance of the PCEV-block with respect to the original

PCEV.

We investigate the performance of the PCEV approach by varying several simulation param-

eters, namely p (the number of outcomes), ρw, ρb and h2 under five main scenarios described

in Table 3.1. For each scenario, 500 simulated datasets were generated, and power was com-

puted for p = 20, 50, 100, 200, 300, 400, ρw = 0, 0.5, 0.7 and ρb = 0, 0.5, 0.7 with ρw ≥ ρb.

Scenario 0 is designed to investigate the type I error rate of each method; therefore, none of

the outcomes are associated with X. Scenarios 1 − 3 are designed to examine power under

various settings. Finally, scenario 4 evaluates the robustness of the PCEV-block approach

with respect to the independence of blocks assumption. In this case, PCEV-block is applied

using three strategies to define the blocks: i) b = 5 blocks are used, where blocks coincide

with the simulation design; ii) b = 10 blocks are used, where the five blocks in the previous

strategy are each split in two; iii) b = 10 blocks are used, where blocks are chosen at random.

These strategies are labeled PCEVb1, PCEVb2 and PCEVrandom, respectively.

Table 3.1: Parameters used for the simulations. p represents the dimension of the outcome
vector Y; ρw and ρb represent the within-block and between-block correlation in the sim-
ulated outcomes (with ρb < ρw); h2 represents the heritability of each outcome associated
with X.

Scenario h2 Outcomes associated with X
0 0 None
1 1% 10 outcomes associated: Y1, . . . , Y5 and Yp−4, . . . , Yp

2 0.1% 25% of the outcomes in first two blocks
3 0.1% 25% of the outcomes in all blocks
4 0.1% 25% of the outcomes in all blocks
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Finally, we also compare PCEV-block to other, traditional high-dimensional methods, namely

lasso (as implemented in the R package glmnet [Friedman et al., 2010]) and sparse PLS

(sPLS) [Chun and Keleş, 2010]. Regularized CCA (rCCA) is excluded due to its prohibitively

high computational time (see Table 3.2). The simulation scenario here is slightly different

than described above: the sample size is fixed at n = 100 and the number of response vari-

ables takes values p = 100, 200, 300, 400, and 500. The correlation structure between these

variables varies in the same way as the other scenarios above. However, the association

structure resembles that of Scenario 3: the response variables are partitioned into 10 blocks,

and 25% of the variables in each block are truly associated with X with h2 =1%.

Table 3.2: Average running times (in milliseconds) over 100 runs for four high-dimensional
methods as a function of the number of outcomes p. The running times for lasso, sparse
PLS and regularized CCA include the selection of a tuning parameter using 10-fold cross-
validation and a grid of length 100.

p
100 200 300 400 500

PCEV 10.68 19.33 29.61 42.17 57.64
lasso 567.79 515.75 558.58 635.14 539.76
sPLS 5418.79 8614.59 10295.60 12188.78 14582.90
rCCA 23723.56 91503.15 206320.93 378216.06 654003.12

Both lasso and sPLS require a tuning parameter. This parameter is selected using 10-fold

cross-validation and with a grid of length 100. Moreover, both methods require a “reversed”

approach, i.e. the multivariate response vector Y needs to be treated as the covariate vector,

and X needs to be treated as the response variable. Finally, to compute power and perform

hypothesis testing, we use the correlation between X and the predicted values β̂TY as

our test statistic for sPLS. For lasso, we compute a Likelihood Ratio Test (LRT) statistic

comparing the selected model to the null model (i.e. including only an intercept). The null

distribution of these test statistics is estimated using 500 permutations. The p-value for

both PCEV-block approaches is also computed using 500 permutations.

In this high-dimensional simulation scenario, we also investigate the impact of block choice
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on the analysis. To this end, we compare two PCEV-block approaches, one where the 10 true

blocks are known a priori, and another where the response variables are randomly assigned

to one of 10 blocks.

3.2.7 Datasets

All datasets used in this paper are publicly available or available upon request. The bisulphite

sequencing data is included in the R package pcev. The Assessment of Risk for Colorectal

Tumors in Canada (ARCTIC) methylation data have been deposited in dbGAP under ac-

cession number [phs000779.v1.p1]. Finally, the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data is archived in a secured and encrypted system provided by the LONI Image

Data Archive (IDA). Applying for access to the data requires the submission of an online

application form.

Analysis of bisulfite sequencing data

The dataset contains measurements of DNA methylation levels derived from bisulphite se-

quencing around the BLK gene, located on chromosome 8. A total of 40 different samples

were analysed from three cell types: B cells (8 samples), T cells (19 samples), and monocytes

(13 samples). These samples are derived from whole blood collected on a cohort of healthy

individuals from Sweden. Data were sequenced on the Illumina HiSeq2000 system. Missing

values are imputed using the mean of neighbouring sites and the imputed data is available in

the R package pcev. The region analysed contains 24,068 CpG sites, from which we removed

the duplicate sites and analyzed the 25% most variable sites (which coincide with the sites

having the largest depth), for a total of 5,986 sites spanning a region of 2.5 Mb. Methylation

levels at each CpG sites were measured using the logit of the methylated proportions. To

apply the PCEV-block approach, we took advantage of the natural clustering as a function

of physical distance between CpG sites on the DNA strand. We clustered CpG sites such

that sites within 500kb were grouped together. In order to obtain clusters with less than
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30 sites (to ensure p < n), we subsequently broke large clusters into smaller ones based on

genomic distance. We obtained a total of 983 blocks of size ranging from 1 to 30 sites. Since

this dataset is too large to use the classical PCEV method, we only used the PCEV-block

framework to test the association between methylation levels and cell type (dichotomous

variable, testing B-cells versus others).

Gene-based analysis of 450K Illumina methylation data

This analysis focuses on a sample of 1035 individuals who served as controls for the ARCTIC

study [Cotterchio et al., 2000, Zanke et al., 2007]. Methylation at 485,512 CpG sites was

measured in stored lymphocyte samples using the Infinium Human Methylation450 Bead-

Chip. The CpG sites were allocated to 20,041 genes using the UCSC gene annotation; we

also considered sites located 2kB upstream from the transcription starting site and down-

stream of the 3’ end. With this definition, the genes under consideration contained anywhere

between 2 and 288 CpGs, allowing us to perform PCEV using both the block and the classi-

cal approach since the number of CpGs per gene was substantially smaller than the number

of individuals. Methylation data was normalised using Functional Normalisation [Fortin

et al., 2014] and further adjusted to account for cell type mixture using the reference-based

method proposed by Houseman et al. [2012] After normalisation, correction and exclusion

of the X and Y chromosomes, we were left with 169,239 CpGs, located in 18,969 genes. In

this analysis, we are interested in the association between methylation at the gene level and

cigarette smoking status (which is dichotomous). By performing a gene-based analysis, the

epigenome-wide significance threshold was lowered. Therefore, more associated genes were

expected to be detected.

Analysis of brain imaging data

Data used in the preparation of this article were obtained from the ADNI database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private partnership, led by Principal Investi-
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gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial

Magnetic Resonance Imaging (MRI), PET, other biological markers, and clinical and neu-

ropsychological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

The analysis performed was based on data acquired from 340 participants from ADNI GO/2,

for whom both genetic and PET data were available. [18F]Florbetapir PET imaging was em-

ployed to assess brain amyloid beta (Aβ) protein load using PET standardised uptake value

ratios (SUVR) in 96 brain regions. These 96 Aβ levels represent the phenotypes of interest in

our analysis. Genotype data was derived from the Illumina OmniQuad array [Potkin et al.,

2009]. Association of Aβ levels with both diagnosis (Alzheimer versus others) and with 20

SNPs located in the PVRL2-TOMM40-APOE region on chromosome 19 were investigated.

Phenotypes were adjusted for gender, age and education level directly within the PCEV

framework.

3.3 Results

3.3.1 Simulation study

As one can see in Figure 3.1, Type I error for PCEV is well controlled and is not influenced

by the number of variables nor by the correlation between outcomes. Here we have used the

Wilks’ test for the classical PCEV, and performance is as expected, even when the number

of responses is as large as 400. The same figure, with 95% confidence intervals included,

appears as Supplementary Figure A.1, showing that the observed variation can be explained

by Monte Carlo errors. Supplementary Table A.1 shows that the Type I error for Wilks’ test

is also well controlled at significance levels as low as 10−4.

Figures 3.2, 3.3, and 3.4 illustrate the power of the PCEV, PCEV-block, and PCR approaches

in the next three simulated scenarios. In all cases, we observe that power of PCR is very

66



0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

ρw = 0; ρb = 0

Number of responses

Ty
pe

 I 
er

ro
r

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

ρw = 0.5; ρb = 0

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

ρw = 0.7; ρb = 0

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

ρw = 0.5; ρb = 0.5

Number of responses

Ty
pe

 I 
er

ro
r

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

ρw = 0.7; ρb = 0.5

PCEV
PCR
PCEV−block

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

0.
08

ρw = 0.7; ρb = 0.7

Number of responses

Ty
pe

 I 
er

ro
r

Figure 3.1: Type I error as a function of the correlation parameters ρw and ρb, and the
number of responses p.

low compared to the PCEV approaches. This is as expected, since PCR is not optimal

with respect to identifying components maximally related to the covariate X. In all figures,

power can also be seen to increase with correlation between the outcomes. Such behaviour

is also expected, since we can think of correlation as spreading out the signal across multiple

outcomes Therefore, this signal is easier to detect with the PCEV methods.
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Figure 3.2: Power of PCEV for scenario 1 as a function of the number of variables p and the
correlation parameters ρw and ρb.
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However, the relationships between power and patterns of associated responses are more

nuanced. Increasing the number of outcomes, i.e. increasing p, has a detrimental effect

on power when the number of outcomes associated with X is low (scenario 1, Figure 3.2),

and this is true for any of the methods that we explored. However, when the signal to
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Figure 3.3: Power of PCEV for scenario 2 as a function of the number of variables p and the
correlation parameters ρw and ρb.
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noise ratio is kept constant as p increases (scenarios 2-3-4), power tends to increase with p

up to a point, and then decrease afterwards. This inflection point seems to be where the

number of outcome variables is large enough that the residual variance matrices become ill-

conditioned. Once such a state is reached, the power of the PCEV approach decreases quickly
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Figure 3.4: Power of PCEV for scenario 3 as a function of the number of variables p and the
correlation parameters ρw and ρb.
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(Figures 3.3 and 3.4) with larger values of p. Crucially, however, the PCEV-block approach

is not affected by this ill-conditioning phenomenon, since the residuals are estimated within

each block. Therefore, each residual variance matrix is estimated from a much smaller

number of outcomes. We also note that varying the between-block correlation ρB in the
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simulation has a small impact on power, as it increases correlation between variables but

does not spread the signal across outcomes. On the contrary, increasing the within-block

correlation ρW increases power, as expected.

Figure 3.5 illustrates the sensitivity of the PCEV-block approach with respect to how the

blocks are chosen. As can be seen, power is reduced when the blocks are more correlated

with each other. This is as expected, since the PCEV-block approach relies mathematically

on the independence between blocks. However, as we will see in the data analysis section,

despite the reduction in power, the VIP measures are very robust to misspecifications of the

independence assumption.

Finally, in Figure 3.6, we see that PCEV-block has better power than both lasso and sPLS.

Moreover, we see that choosing the blocks randomly has little impact on power and we

essentially get the same performance as when the blocks are known a priori. Moreover,

Table 3.2 shows that PCEV is more computationally efficient than the other methods, with

substantial benefit in some cases.

3.3.2 Data analysis

Analysis of bisulfite sequencing data

The genomic region we have analysed near the BLK gene is known to be hypomethylated

in B-cells, compared to other cell types [Miceli-Richard et al., 2015]. Since we have only 40

samples and over 5,986 sites in our region of interest, it is impossible to perform the regular

PCEV test. Therefore, we use the PCEV-block framework, and we expect to capture the

region’s association using only a single statistical test. Note that the methylation levels

in this dataset show only a mild level of correlation: 50% of the CpG sites pairs have a

correlation smaller than 0.15 and 99% of the pairs have a correlation smaller than 0.50.

As a result, the assumption of independence between blocks is not strongly violated in this

example.
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Figure 3.5: Power of PCEV for scenario 4 as a function of the number of variables p and the
correlation parameters ρw and ρb.
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The p-value obtained with PCEV-block for all 5,986 sites simultaneously was 6× 10−5; this

p-value was computed using 100,000 permutations. This result can be considered highly sig-

nificant since only one test was performed. Furthermore, the results obtained are in excellent

agreement with other approaches to analysis. For instance, Figure 3.7a shows the results us-
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Figure 3.6: Power of PCEV for the high-dimensional scenario as a function of the number
of variables p and the correlation parameters ρw and ρb.
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ing local linear regression to obtain a smoothed curve for each cell type in the region studied.

As one can see, there is a region (delimited by vertical bars) comprising the BLK gene and a

small upstream region where B-cells are differentially methylated compared to the two other

cell types. Univariate regression analyses also confirmed this hypothesis (Supplementary

73



Figure A.3). Using the VIP measure, we are also able to identify which CpG sites contribute

most to the association obtained (Figure 3.7b). Note that the region delimited in red in

Figure 3.7b is identical to the region delimited by vertical bars in Figure 3.7a. Furthermore,

there is a strong relationship between VIP measures and univariate p-values (Supplementary

Figure A.4, left panel). Signed VIP measures can also be used to detect the direction of the

association, and we see in Supplementary Figure A.4 (right panel) that such measures are

highly correlated with the univariate slope regression coefficients.

Figure 3.7: Methylation sequencing data: analysis of the BLK region. (a) Analysis using
local linear regression (LOWESS) on methylation values smoothed using BSmooth [Hansen
et al., 2012]. B cells are hypomethylated at the differentially methylation region (DMR)
delimited by vertical lines. (b) VIP (unsigned) measures for each CpG site.

(a)

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●●●●●●●

●

●

●

●●●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●

●

●

●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●●●●●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●●

●●●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●●●

●

●●●

●●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●●●●

●●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●●●●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●●●●●

●●

●

●●●

●

●●

●

●

●●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●●●●●

●●

●●●●●●

●

●●

●

●

●●●

●●

●

●

●●●●●●

●

●●●

●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●●●

●

●●●●●

●

●

●●●●●

●●

●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●●●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●●●●●●●

●

●

●

●●●●●●●●●

●●

●

●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●

●●

●

●●●●●●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●●●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●

●●●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●●●●●●●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●●●

●

●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●●

●

●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●●●●●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●●●●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●

●

●●●

●

●

●●

●●●●●

●

●●●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●●●●●●●●●●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●

●●

●●●●

●

●

●●●

●

●●●●●●

●

●●

●

●●

●

●●

●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●

●

●

●

●

●●●●

●

●●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●

●●●●

●●●●●●

●●●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●

●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●●●●

●

●

●

●●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●

●

●

●●●●●●

●

●

●●

●●●●●

●

●●

●

●●

●

●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●

●●

●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●

●

●●

●●●

●

●

●

●●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●●●●●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●●●●

●

●

●●

●●●●●

●

●●●●●●

●

●

●●

●

●

●●●

●

●●

●

●

●●●●

●

●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●

●

●

●●●●

●

●●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●●●●●●●

●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●

●

●

●●●●●●●●●

●

●●

●

●

●●●

●

●

●

●●●●●●

●

●●

●

●●●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●

●●

●●

●

●●●●

●

●●●●●●

●

●●●●●●●

●●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●●●●●●

●

●

●●●

●

●●●

●

●

●●●●●●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●●●●●

●

●●●●●

●

●●●

●

●

●●

●

●●●●

●

●

●●●

●

●●●●●

●

●●●

●

●

●●●●●●●●●●●

●

●●●●●

●

●●

●

●●●●●●

●

●●●●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●

●●

●●●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●●●●●●

●

●

●●●

●

●

●●●

●

●

●●●●●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●●

●

●

●

●

●●●

●●

●●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●●●●●●●

●

●●

●

●

●

●

●●●●●●●●

●

●●●●

●

●

●●●●

●

●●●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●●

●

●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●●

●●

●●

●●●●

●●

●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●●●●●

●●

●

●

●●●●●●●

●●

●●●●●

●

●

●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●●●

●

●●●●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●

●●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●●

●

●●●●●●●●●

●●●

●

●●

●

●

●

●

●●

●●●●●

●●●●●●

●

●●●

●●

●

●

●

●●●●

●●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●●●

●●●

●●

●

●●

●

●●●●

●

●

●●

●

●

●

●●●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●

●

●●

●●●●●●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●●

●

●

●●●

●●

●

●

●●●●●●●●●●●●●

●

●●

●●●●●●●●

●

●●●●●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●●●

●

●

●●●●●●●●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●●●●●

●●

●●●●●●●●●

●●

●

●

●●●●

●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●●

●

●●

●●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●●●●●●

●

●

●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●

●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●

●●●●●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●●●

●●●●

●

●●●●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●

●

●

●●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●●●

●

●

●●●●

●

●●●●●

●

●●

●

●●

●

●●

●

●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●

●

●

●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●●

●●

●●●●●

●

●●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●

●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●●●●●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●●●

●

●●●

●

●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●●●

●

●●●●●●●●

●

●●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●●●●

●

●●●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
●

●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●●●●●●

●

●●

●●●

●

●

●

●●●●●

●

●

●●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●●

●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●●

●

●●●●

●

●

●●●●

●

●●●●●●●●●

●

●●

●

●

●●●●●

●

●

●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●

●

●

●●●●●

●

●

●●●●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●●●●●●

●

●●

●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●●

●●

●●●●●●●●

●

●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●●●●●

●●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●●

●●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●

●●

●●●

●●●●

●

●

●

●

●

●●●●●●●●

●●

●●●

●●

●●

●●

●

●●●●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●●●

●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●

●●●●

●

●●●●●●●●●●

●

●

●●●●

●

●●●●●●

●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●●●●●●●

●

●

●●

●●●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●●

●●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●●●●●●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●●●●●●●●

●●

●

●●●●●●●

●

●●

●

●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●●

●

●

●

●●●●●●●●●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●●●●

●

●●●●●●●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●

●

●

●●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●●

●●

●●●

●

●

●

●

●●●●●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●

●

●●●●●●●●●●●

●

●●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●●●●●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●●

●

●

●●●●●

●●

●●●●●●●

●

●

●●●

●

●●

●

●●

●

●●

●●●●●●●●●●

●

●

●

●

●●●●●●●●

●

●●●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●●●

●

●●●●

●●

●

●●●●

●

●●●●

●

●●●●●●

●

●

●

●●

●

●

●●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●

●●

●●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●●●

●

●

●●

●

●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●●

●

●

●

●●●

●

●●

●●

●●●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●

●

●

●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●●

●●●●●●●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●●

●●●

●●

●

●

●●●

●●

●●

●

●●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●

●●

●

●

●

●

●

●●●

●

●●●●

●●●

●

●

●●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●●●

●

●

●●

●●●

●●

●●●

●

●●●●●●●●●●●

●

●●●●●

●●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●

●●

●●●

●●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●

●

●●●●●●●

●

●

●

●●●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●

●●●●

●

●●●●●

●

●

●●●

●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●●●●●

●

●

●●

●

●●

●

●

●

●●●●

●

●●●●

●●

●

●●

●

●●●●●

●

●●●

●●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●●

●

●●●●

●●

●●●

●

●●●

●●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●●●●●●

●

●

●

●

●●●●●●

●

●●●

●●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●●●

●

●

●●●●●●●●●

●

●●

●●●●●●

●

●

●

●●●●●●●

●

●●●●●

●

●●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●●●

●

●●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●

●

●●

●

●

●●

●

●●●●

●

●

●●●●●

●●

●●

●

●

●

●

●

●●●

●

●

●●

●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●

●●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●●●●●●

●

●●●●

●

●

●●●

●

●●●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●●●●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●●●

●

●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●●

●

●

●●●

●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●

●●●●●●

●

●●

●

●●●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●

●

●

●●●

●

●●

●

●●●●●●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●

●

●●●

●●

●●

●

●●

●

●●●●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●●

●

●

●●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●●

●

●●●●●●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●●●

●●●

●

●●●

●

●

●

●

●●●

●

●●●●●●●●●

●

●●

●

●

●

●●●

●

●

●●●●●

●●●●●●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●●●

●

●

●

●●●●●

●

●●

●

●●●●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●●

●

●●●

●●

●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●●

●●●●

●

●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●

●

●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●

●

●●●●

●

●●●●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●●●●●●●

●

●●

●

●

●●●●●●

●●

●●●

●

●

●

●

●

●

●

●●●

●●

●●●●●●●

●

●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●

●

●●●●

●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●●●

●

●●●●●●●

●

●

●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●

●

●●

●●

●

●●

●

●

●

●●●

●

●●●

●

●●●●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●●●

●●

●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●●

●●

●

●●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●●●●●●●●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●●

●

●●●

●●●

●●●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●●●●

●

●

●●●●●

●

●●●●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●●●●●●●●

●

●

●●●

●

●

●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●●

●●●●●●

●

●

●●

●

●●●●

●

●●●●●●

●

●

●●

●

●●

●

●●●●

●

●●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●

●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●●●

●

●●●●

●

●●●●

●

●

●

●

●●●●●

●●●

●●●●●●●

●

●●●

●

●●●●●

●

●

●

●●●

●

●●●●●●●●●●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●

●●●●

●

●●●●●

●●●●

●●

●

●

●

●●●●●●

●

●●●●●●

●

●

●●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●●●●●●●●

●●

●

●●●●●

●●

●

●●

●

●●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●●●●●●●●●●●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●●●●

●

●●

●

●

●●●●●●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●

●●●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●

●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●●●

●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●●●●●●●

●

●●

●

●

●

●●●●

●●●

●●●●

●

●●●●●●●●

●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●

●●●●

●

●●

●●

●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●

●●

●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●●●

●●●

●●

●●●●

●●

●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●

●●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●●

●●●●●●●

●

●●●●●●●●

●●

●●

●

●●●●●

●

●●

●

●●●●●

●

●●●●

●

●● ●●

●

●●

●

●

●

●●●●

●

●●●●●●●●●

●

●

●

●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●

●

●

●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●

●

●

●

● ●● ●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●

●●●

●

●

●

●

●●●

●

● ●●

●

●●●●●●●●●●●●●●●● ●

●

● ●

●●

●

●●●●

●

●●●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●

●

●

●●●●

●

●●

●

●

●●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●

●●●●

●

●●●●●●

●●

●●●●●

●

●●●●●●

●

●●●

●

●●

●●

●●●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●● ●●●

●

●●●●●●

●

●

●

●●

●●

●●●●● ●

●●

●●●

●

●●

●

●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●

●

●●●

●●●●●●●●●●●●

●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●●●●●●●

●

●

●

●● ●

●

● ●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●

●●

●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

● ●●●●●●●

●

●● ●

●

●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●●●●

●

●

●●●●

●

●●

●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●●●

●

●

●

●●●●●

●

●●

●

●●●●●●●●●●

●

●●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

10.5 11.0 11.5 12.0 12.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position (Mb) on Chromosome 8

M
et

hy
la

tio
n 

pr
op

or
tio

n

BLK

B cell
Other cell types

(b)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position (Mb) on Chromosome 8

V
ar

ia
bl

e 
Im

po
rt

an
ce

Gene-based analysis of 450K Illumina methylation data

Analysis of the ARCTIC data was undertaken gene by gene, after selecting probes in or near

each gene. In Figure 3.8, we show a scatter plot comparing the results of PCEV for each

gene (without using the block version), and a gene level summary of the univariate p-values,

where both are given on the negative log scale. The gene-level summary of the univariate

p-values is defined as the minimum p-value among the CpGs tested in the gene, corrected
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for the number of independent CpG sites in the gene, i.e. the minimum p-value is multiplied

by the estimated number of independent CpGs. The effective number of independent tests

was estimated using the method proposed by Gao et al. [2008]. By examining the smallest

p-values, or the top of this scatter plot, Figure 3.8 suggests that PCEV tends to enhance

power. This is particularly true for the genes with the strongest association. In Figure 3.9, we

compare the VIP values obtained from both the classical PCEV and the block approach, for

four different genes known to be associated with cigarette smoking: F2RL3, AHRR, RARA,

and GNG12 [Breitling et al., 2011, Lee and Pausova, 2013]. The PCEV-block approach

proceeded by defining three blocks in each of these genes, and by allocating CpG sites to

blocks in a linear fashion (for example, if a gene contained 30 sites, the first 10 were assigned

to one block, the next 10 to a second block and so on). We purposely chose a non-optimal

block definition so that we could evaluate the robustness of the block method to a poor

choice of block (here, blocks were not chosen to be independent). As we can see, the VIP

values provide information that is very similar to the univariate p-values across these four

genes.

Analysis of brain imaging data

This dataset illustrates an example where p ≪ n; therefore, no block strategy was necessary

to perform a PCEV analysis. However, we performed both analyses (with and without the

blocks) for the sake of comparison. In this data, there is a very high level of correlation

between all brain regions, as shown in Supplementary Figure A.5. Such high and exten-

sive correlation makes clustering regions into blocks extremely challenging, and we did not

succeed in identifying well-separated clusters with any reasonable level of confidence. How-

ever, we present the results of the PCEV-block approach using 10 blocks obtained using a

hierarchical clustering technique. Hence, we note that this dataset has several interesting

features allowing us to i) compare results between PCEV and PCEV-block, and ii) eval-

uate the performance of the PCEV-block strategy, using the traditional PCEV approach
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Figure 3.8: Comparison of p-values obtained using the gene-based PCEV approach (without
block) and a univariate analysis on the ARCTIC data. Red lines correspond to significance
threshold.
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as a gold standard, in a situation where clusters are very poorly chosen and highly corre-

lated with each other. Analysis of the Aβ accumulation against disease status (Alzheimer

disease versus others) revealed a significant association regardless of the testing procedure

chosen (see Table 3.3). Furthermore, Figure 3.10 illustrates the good agreement between
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Figure 3.9: Comparison of the variable importance (VIP) measures for four genes, F2RL3,
AHRR, RARA, and GNG12, known to be associated with cigarette smoking in the analysis
of the ARCTIC data. For each gene, the top panel shows the VIP obtained from the PCEV
without block, while the bottom panel shows the VIP obtained from the PCEV with block.

●●
●

●
●●

●

●

0 5 10 15 20

0.
0

0.
4

0.
8

F2RL3

V
ar

ia
bl

e 
im

po
rt

an
ce

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●
●●●●
●●●

●
●●

●●

●

●
●●

●

0 5 10 15 20

0.
0

0.
4

0.
8

AHRR

●●
●●●●
●●
●
●●●
●●
●●●

●●●●

●

0 5 10 15 20

0.
0

0.
4

0.
8

RARA

●●
●
●
●●
●●
●●
●

●

●

●

●

●

0 5 10 15 20

0.
0

0.
4

0.
8

GNG12

●●
●

●

●

●
●

●

0 5 10 15 20

0.
0

0.
4

0.
8

Univariate p−value

V
ar

ia
bl

e 
im

po
rt

an
ce

●
●

●

●

●
●
●
●●

●

●●

●●

●
●

●
●

●

●

●

●
●●

●

●●

●

●●

●

●

●
●

●

●●●

●●

●
●

●

●

●

●

●

●
●

●●
●
●

●
●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

0 5 10 15 20

0.
0

0.
4

0.
8

Univariate p−value

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●●

●

●●
●

0 5 10 15 20

0.
0

0.
4

0.
8

Univariate p−value

●
●

●

●

●

●

●

●
●●
● ●

●

●

●

●

0 5 10 15 20

0.
0

0.
4

0.
8

Univariate p−value

variable importance measures computed using the classical PCEV approach and the block

approach. We also note the monotonic relationship between univariate p-values (obtained

from a simple regression analysis between Aβ levels in each brain region and disease status)

and VIPs.

Table 3.3: P-values for the joint association between amyloid-β accumulation and disease
status. Permutation tests were performed using 100,000 permutations.

PCEV PCEV with blocks
Exact test 8.13× 10−5 —
Permutation test 2× 10−5 5× 10−5

To further assess robustness to the choice of blocks, we defined 500 random partitions of the

96 brain regions into ten blocks of similar size. PCEV-block was then performed using each

of these random partitions. In all cases, the p-values obtained (using 100,000 permutations)

were less than 10−5. Moreover, the VIP measures were highly consistent. For each of the

random partitions, we looked at the brain regions receiving 1 of the 10 largest VIP values.
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Figure 3.10: PCEV variable importance measures versus univariate p-values (negative log
scale) for the association between amyloid-β accumulation and Alzheimer’s disease status.
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We then compared this list with that coming from the original analysis (i.e. the original

PCEV approach, without any block). All such lists coming from the random partitions

shared at least 7 brain regions with the original analysis, and 95% shared at least 8 brain

regions. Moreover, the same brain region (i.e. brain stem) consistently received the highest

VIP value.

Finally, we also tested the global association between the Aβ levels and 20 SNPs in a region

around the APOE gene. The p-value obtained was 0.0117; since only one test was performed,

this is significant at level α = 0.05. To measure the contribution of each SNP to the overall

association, we looked at two different measures. First, we computed the Pearson corre-

lation between each SNP and the estimated PCEV. Second, we computed a p-value using

a LRT. We note that these two methods provide distinct and complementary information:

the correlation is a marginal measure of association, whereas the LRT p-value measures the

incremental value of a SNP to the model containing all SNPs but the current one. These

values, along with the name of the gene containing each SNP, appear in Table 3.4.
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Table 3.4: P-values and correlations for the joint association between amyloid-β accumula-
tion and 20 SNPs located near the APOE gene. Correlations are computed with respect to
a SNP and the PCEV component. Likelihood Ratio Test (LRT) p-values were computed
using the multivariate linear model. The SNPs are ordered from highest correlation value to
lowest. The position corresponds to the location of the SNP on chromosome 19.

SNP id Position Gene Correlation LRT p-value
rs769449 45410002 APOE 0.536 0.023
rs157582 45396219 TOMM40 0.496 0.554
rs2075650 45395619 TOMM40 0.445 0.413
kgp12169129 — — 0.377 0.709
kgp7807118 — — 0.371 0.168
kgp658335 — — 0.343 0.966
rs157580 45395266 TOMM40 0.278 0.657
rs1160985 45403412 TOMM40 0.275 0.689
kgp2187574 — — 0.262 0.184
kgp9081044 — — 0.241 0.803
rs3729640 45381917 PVRL2 0.136 0.087
rs445925 45415640 APOC1 0.096 0.050
rs439401 45414451 APOE 0.090 0.664
rs8104483 45372354 PVRL2 0.090 0.104
rs387976 45379060 PVRL2 0.088 0.580
kgp5805962 — — 0.084 0.605
kgp7618482 — — 0.065 0.769
rs11879589 45373276 PVRL2 0.064 0.454
kgp3326341 — — 0.058 0.985
kgp347852 — — 0.025 0.356

3.4 Discussion

In this article, we have revisited a dimension-reduction approach, PCEV, which has unfortu-

nately received little attention in statistical genetics or biostatistics in general. We showed

how PCEV is well-suited for multivariate association studies. This is due to its optimality

with respect to capturing the association between a multidimensional phenotype and a set

of covariates.

We also presented a hypothesis-test framework which relies on an asymptotic result but no

resampling. In particular, we presented two analytic tests that can be used with the tra-

ditional single-block PCEV: Wilks’ and Roy’s tests. The former should only be used when
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there is a single covariate and when n > p + 1, while the latter can be used in much more

general settings (even when p ≫ n). Note also that Wilks’ test is exact, whereas Roy’s uses

an asymptotic result. Hence, the latter test is based on an approximation to the null distribu-

tion when the sample size is large enough. These asymptotic results mean that PCEV can be

computationally extremely fast, which makes it feasible for use in large scale pipelines of mul-

tivariate analyses. For the block approach to PCEV, the independence of blocks assumption

violates the distributional assumption necessary for Johnstone’s approximation [Johnstone,

2008] to be valid; for this reason, we have opted for a permutation procedure in order to

test for association. Finally, although our discussion has focused on testing the first PCEV

component (which is the only component computable when X is a single covariate), this

framework can also be applied to several PCEV components independently, when multiple

covariates are analysed simultaneously.

Our framework also allows for the direct inclusion of confounding variables. In the presence

of confounding, this feature leads to unbiased estimates of the matrix B of regression coef-

ficients and therefore to correct inference about the association between the outcomes and

the covariates. However, we note that covariates (which we denoted X in our model) and

confounders (which we denoted Z) play a very different role in the analysis: the covariates

should be of scientific interest to the analysis. For example, in our analysis of Aβ accu-

mulation and Alzheimer’s disease, we were not interested in the effect of age, gender, and

education level on Aβ accumulation in the brain. However, since these three variables are

known to be associated with both Aβ levels and with Alzheimer’s disease, we included them

as confounders in our PCEV analysis.

We also introduced a useful metric, the VIP measures, to help researchers decompose the

global signal with respect to each phenotype. This metric measures the marginal importance

of each variable, in contrast to their incremental importance with respect to the other vari-

ables. This fact is highlighted in Figures 3.9 and 3.10, where we show that the VIP measures
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are a monotone function of the univariate p-values. For this reason, we recommend the use

of the VIP values in a more qualitative approach: extreme values, as well as large gaps in

the distribution, are more informative than the actual values.

Given that there are likely to be many possible block partitions, understanding the impact

of poor block choice is of interest. In general, for a fixed number of blocks of constant size,

minimizing the correlation between the blocks will lead to maximal power. On the other

hand, when blocks are not chosen in an optimal way, simulation results and data analyses

below show that the loss in power is minimal.

We compared the performance of PCEV to PCR, which is a very popular approach for region-

based analyses [Lindenmayer et al., 1995, Kherif et al., 2002, Livshits et al., 2002, Arya et al.,

2002, Rowe and Hoffmann, 2006, Teipel et al., 2007, Formisano et al., 2008] . As expected,

our simulation results show there is no guarantee that the first principal component is at

all associated with the covariates. PCR had very low power to detect association, especially

when compared to both the classical and block approaches to PCEV. Hence, in general, we

discourage the use of PCR for region-based analyses of multidimensional phenotypes.

In a truly high-dimensional simulation scenario (p ≫ n), we compared PCEV-block to both

lasso and sPLS. As expected, the computational time is much faster for PCEV than the

other competing methods—in fact, PCEV is 10 times faster than lasso, its fastest competi-

tor. Moreover, we also showed that power is higher for PCEV in almost all scenarios, with

only one exception when there is no correlation between any of the variables. In this con-

text, all four methods give similar results. The lower power of lasso and sPLS seen with

other correlation structures is likely due to small effect sizes between the covariate and in-

dividual response variables. The lower power of lasso could also be a consequence of its

poor performance in the presence of correlated features [Efron et al., 2004]. As can be seen

in Supplementary Figure A.2, neither lasso nor sPLS were successful in selecting the truly

associated variables. On the other hand, PCEV was able to capture the global signal even
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when individual associations were small. We note that PCEV has many other advantages

over lasso and sPLS: i) it does not require a “reverse” analysis (where the role of Y and

X are reversed); ii) confounders can be directly included in the analytical framework; and

iii) it can easily handle more than one covariate of any type (i.e. binary, categorical, or

continuous).

For comparison purposes, we decided to use lasso and sPLS instead of similar procedures

that incorporate more structured penalties, such as sparse group lasso [Simon et al., 2013] or

sparse group PLS [Liquet et al., 2016]. These methods make use of external information to

define groups of similar variables that are more likely that have similar regression coefficients.

The penalty then uses this information to shrink the coefficients toward a common mean.

However, this new information needs to be incorporated via the addition of a second tuning

parameter. While these methods would likely perform better than lasso and sPLS in terms

of variable selection, it is not clear that this would lead to better power. In any case,

the simulation shows that when PCEV ignores the block information and the blocks are

selected randomly (PCEV-rand), the performance is similar to when the block information

is incorporated in the estimation.

In all our simulation scenarios, we included only one covariate, and we did not include

any confounders. However, the effects of these factors on power and Type I error are well

documented; this follows from our assumption of a linear model. For example, including

more covariates will decrease power of all methods, while the effect of adding confounders

to the analysis will depend on the strength of the correlation between the covariates and the

confounders. We therefore decided not to present simulation scenario re-addressing these

questions [Pearl, 2009].

Our analysis of the bisulfite sequencing data reveals how useful the block approach can be

in the presence of high-dimensional data. Indeed, most multivariate methods do not give

meaningful results for such a dataset, due to the discrepancy between the sample size and
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the number of variables. In contrast, the block PCEV approach was able to recapitulate

known results about the potential existence of a Differentially Methylated Region (DMR)

around the BLK gene. As shown in Figure 3.7b (right panel), PCEV-block captures the

association between 5,986 variables and the cell-type covariate in a single test, despite the

fact that there are only 40 subjects. Moreover, the VIP values were able to accurately

pinpoint the source of the signal among the 6,000 CpG sites (Figure 3.7a). Supplementary

Figure A.4 (left panel) shows that VIP correlates well with nominal p-values from univariate

tests, and Supplementary Figure A.4 (right panel) indicates that signed-VIP values correlate

with univariate regression coefficients measuring the association between each variable and

cell type.

With the ARCTIC dataset, our aim was to confirm the results of the association between

methylation and cigarette smoking shown in Breitling et al. [2011]. Two genes showed

particularly strong associations in Figure 3.8, F2RL3 (PCEV p-value: ≈ 10−26), and AHRR

(PCEV p-value: ≈ 10−25), and both are previously reported smoking meQTL loci [Breitling

et al., 2011, Lee and Pausova, 2013]. By pooling all CpG sites at or near each gene, our

power to detect these associations was greater than what we could have achieved with an

adjusted univariate approach. After using the VIPs to decompose the multivariate signals at

these two genes (Figure 3.9), it is evident that for F2RL3, the signal is mostly driven by one

CpG site, whereas for AHRR, there seem to be five sites contributing to the overall signal.

In the latter case, this “pooling of forces” probably leads to the power increase.

In the context of the brain imaging study, we were able to investigate the effect of wide-

ranging correlations on the block approach to PCEV. We showed that, even though the

independence of block assumption was clearly violated, the p-value obtained using permu-

tations was comparable to that obtained from a classical approach to PCEV (i.e. without

blocks) and an exact test. Furthermore, the VIP factors were similar for both approaches.We

also looked at the impact of choosing blocks randomly, and we showed that the results were
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similar to those obtained from an analysis using the original PCEV framework (i.e. without

any block). Therefore, we see that the block approach is quite robust to violations of the

assumption contained in Theorem 1.

We also provided an example of using PCEV with multiple covariates. We analysed the joint

association between Aβ accumulation and 20 SNPs in the PVRL2-TOMM40-APOE region

on chromosome 19, and we obtained a single, significant p-value. In assessing the contribution

of each SNP to this global result, we determined that the most important SNP was rs769449,

which is located in the APOE gene. This SNP is a well-known risk variant for Alzheimer’s

disease [Cruchaga et al., 2013]. We also uncovered evidence of linkage disequilibrium in

this genomic region: a few SNPs located in the TOMM40 gene show evidence of marginal

association (as measured using correlations), but none of them are significant when using a

Likelihood Ratio test. This is consistent with results in the literature [Yu et al., 2007, Bu,

2009].

In summary, we have shown how PCEV is particularly well-suited for finding multivariate

signals with widespread association with a set of covariates. There is a fine balance to strike

when performing a multivariate association test with a very high-dimensional phenotype:

although we want to include multiple correlated response variables and thus borrow strength

across phenotypes, at the same time we would also like to retain interpretability of the

multivariate signal. Suppose, to give an extreme example, that in the context of a genome-

wide methylation association study, an analyst decided to include all the CpG sites available

on a microarray as an enormous set of outcomes, and then to test for global association, at

the genome level, with a covariate. Rejecting the null hypothesis in such a scenario would be

of no help whatsoever in targeting the source of this signal. This example also illustrates the

fact that PCEV is not a variable selection method, and our simulations showed that when

the signal is very sparse and the signal-to-noise ratio is low, power is greatly reduced. In

contrast, if the analyst decides to severely limit the number of outcomes jointly analyzed,
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then targeting the source of any identified associations will be straightforward, but there will

be little benefit over univariate testing. In general, choosing an appropriate set of outcomes

for joint analysis, i.e. finding the right balance between interpretability and power, is an

important consideration that should consider the context and the biology. We feel that

region-based analyses—e.g. where regions could be parts of the brain, genes, pathways or

some other external data partitioning—is where this method should be considered and can

shine.

3.5 Software

An R package called pcev, implementing both the block and the classical approach to PCEV,

is currently available on both CRAN (cran.r-project.org/) and GitHub (github.com/GreenwoodLab/pcev).
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Chapter 4

A Tracy-Widom Empirical Estimator

For Valid P-values With

High-Dimensional Datasets

Preamble to Manuscript 2. While working on the first manuscript, I experimented with

several ways of regularising the estimation of the residual variance matrix, i.e. the matrix

appearing in the denominator of the Rayleigh quotient corresponding to PCEV. One of

these attempts involved replacing the sample covariance estimator of the residuals by the

linear shrinkage estimator of Ledoit and Wolf [2004]. To compute p-values, I was using a

permutation framework. However, the Ledoit-Wolf estimator was a location-scale transform

of the sample covariance matrix, and I eventually recognised a parallel between the Ledoit-

Wolf methodology and the transformation of the largest root appearing in Johnstone [2008].

As a consequence, I started to investigate whether a different location-scale transformation

of the largest root could be obtained for PCEV combined with the Ledoit-Wolf estimator.

Such a discovery would yield an analytical approximation of the null distribution of the test

statistic, freeing us from the permutation inferential framework.
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However, an analytical description of such a transformation seemed intractable, and I even-

tually decided to estimate these parameters using a small number of permutations. This

number of permutations was significantly less than that that would be required for the full

permutation procedure, especially in the context of multiple testing. Simulation studies then

confirmed that this empirically-derived transformation yielded valid p-values.

Around the same time, I started a collaboration with Stepan Grinek on using PCEV as

a visualisation tool for sequencing data. While reading the pattern recognition literature,

Stepan had discovered that a truncated variant of Singular Value Decomposition (SVD) was

routinely used to solve generalised eigenvalue problems when the matrices are not invertible.

One consequence of this discovery was another way to perform PCEV with high-dimensional

data.

However, I soon realised that the result of Johnstone [2008] was not applicable to this high-

dimensional setting. Indeed, his result contains an explicit condition on the rank of the

matrices in order to guarantee that the joint distribution of the roots of the generalised

eigenvalue problem is regular. In the high-dimensional setting, this rank condition no longer

holds.

Again, we could have computed valid p-values using a permutation procedure, but I saw

an opportunity to test my empirical estimator in this singular setting. There is plenty

of evidence in the literature that the Tracy-Widom distribution should still be the “right”

limiting distribution. And indeed, simulations showed that the empirical estimator yielded

valid p-values in this setting as well.

Finally, through several iterations of the manuscript, I recognised that the methods could be

applied much more broadly than just within the PCEV context. Indeed, it could be applied

to any double Wishart problem, which covers PCEV, but also CCA, Multivariate Analysis of

Variance (MANOVA), and many other methods from multivariate analysis. The manuscript

presented in this thesis reflects this larger scope.
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Abstract

Recent technological advances in many domains including both genomics and brain imaging

have led to an abundance of high-dimensional and correlated data being routinely collected.

Classical multivariate approaches like Multivariate Analysis of Variance (MANOVA) and

Canonical Correlation Analysis (CCA) can be used to study relationships between such

multivariate datasets. Yet, special care is required with high-dimensional data, as the test

statistics may be ill-defined and classical inference procedures break down.

In this work, we explain how valid p-values can be derived for these multivariate methods even

in high dimensional datasets. Our main contribution is an empirical estimator for the largest

root distribution of a singular double Wishart problem; this general framework underlies

many common multivariate analysis approaches. From a small number of permutations

of the data, we estimate the location and scale parameters of a parametric Tracy-Widom

family that provides a good approximation of this distribution. Through simulations, we

show that this estimated distribution also leads to valid p-values that can be used for high-

dimensional inference. We then apply our approach to a pathway-based analysis of the

association between DNA methylation and disease type in patients with systemic auto-

immune rheumatic diseases.
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4.1 Introduction

Consider the following scenario: your research team received a small grant to study the

relationship between anatomical brain features and a set of clinical phenotypes. For the

past several months, you’ve been painstakingly enrolling patients in the study and collecting

neuroimaging data on them. The subject-matter expert on your team has already grouped

the millions of voxels into regions of interest. A given region can now be represented by a

dataset Y of dimension n × p, for n patients, and the clinical phenotypes by a dataset X

of dimension n × q. Prior to the study, you had identified Canonical Correlation Analysis

(CCA) as a potential analytical tool; it would allow the extraction of maximally correlated

components from both datasets, and the overall relationship between Y and X could be

summarised with a series of canonical correlations. In the classical low-dimensional setting

(p < n, q < n), you could also test for significance of these canonical correlations using

Rao’s statistic [Mardia et al., 1979]. However, despite your colleague’s excellent work, most

brain regions still contain more features or measurements than your overall sample size

(p > n); in other words, you are no longer in the classical inference setting, but in a high-

dimensional setting. Building on your knowledge of linear algebra and matrix decomposition,

you know that you can still extract the canonical components and canonical correlations

using a truncated Eigenvalue Decomposition (EVD). But one last obstacle remains: the null

distribution of the first canonical correlation is unknown in this high-dimensional setting.

Although you could rely on a permutation strategy to obtain a p-value, you are also aware

that such a procedure is very computationally expensive if you want to reach a high level

of precision for the estimated p-value, or if you want to analyze multiple regions in the

brain.

In this article, we provide a fast computational approach for estimating the null distribution

of the first canonical correlation in such high dimensional setting.

However, the contribution of this paper extends well beyond this CCA example provided

91



above. More generally, a cursory look at the table of contents of recent volumes in both

neuroimaging and genomics journals reveals a strong bias towards multivariate analysis

methods such as Principal Component Analysis (PCA), Multivariate Analysis of Variance

(MANOVA), CCA, Principal Component of Explained Variance (PCEV), and Linear Dis-

criminant Analysis (LDA); for a small yet broad sample, see Park et al. [2017], Zhao et al.

[2017], Hao et al. [2017], Pesonen et al. [2017], Gossmann et al. [2018], Fraiman and Fraiman

[2018], Happ and Greven [2018], Yang et al. [2018], Turgeon et al. [2018b]. This is hardly

surprising, given the evolving nature of technological capabilities data and the complex un-

derlying biological processes that are now measurable. As described in our scenario above,

using truncated matrix decomposition, we can often perform dimension reduction even in

high dimensions. But beyond dimension reduction, many classical multivariate approaches

also aim at summarizing the relationship between two datasets Y and X; in the list above,

CCA, MANOVA and PCEV all have this common goal. Furthermore, this subset of methods

also provide a unified way of performing null hypothesis significance testing: they all rely

on the largest root of a double Wishart problem. Specifically, the strength of the associa-

tion between Y and X is measured in terms of the magnitude of the largest solution to the

following determinantal equation:

det (B− λ(A+B)) = 0. (4.1)

where A and B are two independent random matrices, both following a Wishart distribution

with the same scale matrix. The definition of A and B is formulated under the null hypothesis

and is method-specific. Several specific examples will be given later in this paper. From the

distribution of this largest root, we can then compute a p-value for the null hypothesis of

interest.

More formally, in high-dimensional settings, when the sample size is smaller than the number

of measurements, both matrices A and B can have singular distributions. This singularity

92



leads to both computational challenges for estimation and theoretical challenges for inference.

On the one hand, common estimators in the non-singular case can be ill-conditioned (or

even undefined) for singular problems; on the other hand, classical asymptotic convergence

results rely on large sample sizes and therefore may not directly apply to high-dimensional

settings.

In this work, we are interested in multivariate analysis involving two datasets, Y and X, such

that the dimension of one or both matrices may be much larger than the sample size n. We

posit that proper high-dimensional inference in several multivariate statistical methods such

as CCA, MANOVA and PCEV, can be attained by studying the singular double Wishart

problem described above. Our main contribution is an empirical estimator of the distribution

of the largest root that is applicable to the analysis of high-dimensional data. This estimate

provides valid p-values by fitting a location-scale family of distributions to a small number

of permutations of the original data. By a theorem of Johnstone [2008], this family of

distributions is known to provide an excellent approximation in the non-singular case, and

we provide empirical evidence that this good performance extends to the singular case.

The rest of the article is structured as follows: in Section 4.2, we provide some detailed

examples of double Wishart problems; these examples are later used to illustrate our ap-

proach. In Section 4.3, we describe our approach to approximating the distribution function

of its largest root using an empirical estimator. Then, in Section 4.4, we investigate the nu-

merical accuracy of the approximation and show how it leads to valid p-values. We further

illustrate our approach through an analysis of the association between DNA methylation

and disease type in patients with systemic auto-immune rheumatic diseases. Finally, in Sec-

tion 4.6, we explain how our empirical estimator can be extended to accommodate linear

shrinkage covariance estimators within the double Wishart setting. Our approach has al-

ready been implemented in two R packages: pcev and covequal; both packages are available

on CRAN.
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Notation

In what follows, X and Y will denote n× q and n× p matrices, respectively. We also write

A ∼ Wp(Σ, n) when A is Wishart-distributed with parameters p, n and scale matrix Σ.

Recall that this is equivalent to having an n× p matrix X where each row is independently

drawn from a multivariate normal Np(0,Σ) and such that A = XTX.

4.2 Examples of double Wishart problems

As stated above, the developments in our paper build on theory associated with double

Wishart problems. Therefore, we start here by giving four examples of well known multi-

variate tests that are each double Wishart problems in order to emphasize the number of

different applications of the theoretical results to follow. In each case, if the two matrices

A and B are singular or ill-conditioned, then the theoretical results developed for double

Wishart problems no longer apply. The four examples are one-way MANOVA, a test of

equality of covariance matrices, CCA, and PCEV. The first example is given for its sim-

plicity and historical importance; the other three examples are used later to illustrate our

approach.

4.2.1 MANOVA

Suppose that we have a set of n independent observations {Yik}, where Yik ∼ Np(µk,Σ) de-

notes the i-th observation of the k-th group, with i = 1, . . . , nk, k = 1, . . . , K. In MANOVA,

we are interested in the null hypothesis of equality of means H0 : µ1 = · · · = µk. First, for

each group, we can form the sample mean Ȳk and covariance matrix Sk. We then compute

two basic quantities: 1) the within-group sum of squares W =
∑︁

k nkSk; and 2) the between-

group sum of squares B =
∑︁

k nk(Ȳk − Ȳ )(Ȳk − Ȳ )T , where Ȳ = n−1
∑︁K

k=1

∑︁nk

i=1 Yik is the

overall mean. Under H0, the matrices W and B are independent and Wishart-distributed,

with W ∼ Wp(Σ, n − K) and B ∼ Wp(Σ, k − 1). The union-intersection test of H0 uses
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the largest root of W−1B as a test statistic or, equivalently, that of (W + B)−1B [Mardia

et al., 1979, Chapter 12]. In the notation of Equation 4.1, we therefore can express the

union-intersection test as a double Wishart problem with A = W and B = B. This test

statistic is also known as Roy’s largest root, and it is one of the standard tests in classical

MANOVA.

4.2.2 Test of covariance equality

Suppose that independent samples X, Y from two multivariate normal distributions Np(µ1,Σ1)

and Np(µ2,Σ2) lead to covariance estimates S1, S2 which are independent and Wishart dis-

tributed on n1, n2 degrees of freedom, respectively. For example, we could take Si to be the

maximum likelihood estimate of the covariance matrix based on ni + 1 observations. We

are interested in testing the null hypothesis H0 : Σ1 = Σ2; this can done using the largest

root of the determinantal equation 4.1 as a test statistic for which we set A = n1S1 and

B = n2S2 [Anderson, 2003, Chapter 10].

4.2.3 CCA

Suppose we have two datasets X, Y of dimension n× q and n× p, respectively. Recall that

CCA seeks to find linear combinations of X and Y that are maximally correlated with each

other. Assume each row (Xi, Yi) of (X, Y ) has joint distribution Nq+p(0,Σ), where Σ has

the form

Σ =

⎛⎜⎝ ΣX ΣXY

ΣT
XY ΣY

⎞⎟⎠ .

For simplicity, we first assume ΣX = ΣY (which implies that q = p). Under our normality as-

sumption, a hypothesis test for independence between X and Y is equivalent to a hypothesis

test for ΣXY = 0.

95



Write P = Y (Y TY )−1Y T and let P⊥ = I − P . Using these quantities, we can define

A = XTP⊥X,

B = XTPX.

Under our assumptions, we have A ∼ Wq(ΣX , n− p) and B ∼ Wq(ΣX , p). We can test the

null hypothesis H0 : ΣXY = 0 using as a test statistic the largest root of the double Wishart

problem corresponding to the pair of matrices A,B above [Mardia et al., 1979, Chapter 10].

We note that this largest root corresponds to the square of the first canonical correlation

between X and Y .

The computation above can be generalized to the case when ΣX ̸= ΣY (and q ̸= p) and with

nonzero mean; for details, see Johnstone [2009].

4.2.4 PCEV

Similar to CCA, PCEV can also be used to simultaneously perform dimension reduction

and test for association between two multivariate samples X, Y of dimension n × q and

n×p, respectively. However, whereas CCA seeks to maximise the correlation between linear

combinations of Y and X, PCEV seeks the linear combination of Y whose proportion of

variance explained by X is maximised. Specifically, we assume that the relationship between

X and Y can be represented via a linear model:

Y = ΓX + E,

where Γ is a p × q matrix of regression coefficients for the covariates of interest, and E ∼

Np(0,ΣR) is a vector of residual errors. This model assumption allows us to decompose the
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total variance of Y as the sum of variance explained by the model and residual variance:

Var(Y ) = ΣM + ΣR,

where ΣM = ΓVar(X)ΓT . PCEV seeks a linear combination of outcomes, wTY , that max-

imises the proportion R2(w) of variance being explained by the covariates X:

wPCEV = argmax
w∈Rp:∥w∥=1

R2(w),

where

R2(w) =
Var(wTΓX)

Var(wTY )
=

wTΣMw

wT (ΣM + ΣR)w
. (4.2)

Then testing the null hypothesis H0 : Γ = 0 is performed using as a test statistic the largest

root of the determinantal equation 4.1 for which we set A = ΣR and B = ΣM . Turgeon

et al. [2018b] have further details on this dimension-reduction technique.

For further examples of double Wishart problems, we refer the reader to Johnstone [2008,

2009].

4.3 Empirical Estimator of the Distribution of the Largest

Root

As we can see from the examples above, many null hypothesis significance tests in multi-

variate analysis follow the same two steps 1) computing the largest root of equation 4.1; and

2) from its distribution under the null hypothesis, compute a p-value. For the first point,

we may have to use a truncated version of Singular Value Decomposition (SVD) (or EVD)

when both A and B are singular; this singularity is common in high-dimensional datasets.

In essence, these matrix decompositions are restricted to the subspace spanned by the eigen-

vectors corresponding to the non-zero eigenvalues; the mathematical details are reviewed in
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Section B.1 of the Supplementary Materials. In this section, we focus on the second point.

We show how the distribution of the largest root can be accurately approximated in the

singular setting.

4.3.1 Known results in the non-singular setting

In the non-singular setting, the distribution of the largest root to the determinantal equa-

tion 4.1 is well studied [Mardia et al., 1979, Muirhead, 2009a]. To provide a theoretical

underpinning to the remainder of the section, we highlight two approaches to computing

this distribution: an exact approach, and an asymptotic result.

First, Chiani [2016] described an explicit algorithm for computing the Cumulative Distri-

bution Function (CDF) of the largest root λ. Building on his earlier work [Chiani, 2014],

he proposed a new expression that relates the CDF to the Pfaffian of a skew-symmetric

matrix. He also provided a set of recursive equations that provide a fast and efficient way

to compute this matrix. However, this matrix quickly becomes very large when the pa-

rameters of the Wishart distribution increase, leading to both computational instability and

numerical overflow problems. And yet, this matrix can only be computed in the non-singular

setting.

The second approach we wish to highlight uses results from random matrix theory to derive

an approximation to the marginal distribution. Specifically, Johnstone [2008] showed that

after a suitable transformation of the largest root, its distribution can be approximated by

the Tracy-Widom distribution of order 1. His result, using the notation of this manuscript,

is given below:

Theorem 2. [Johnstone [2008]] Assume A ∼ Wp(Σ,m) and B ∼ Wp(Σ, n) are independent,

with Σ positive-definite. Let λ be the largest root of Equation 4.1. As p,m, n → ∞, we have

logitλ− µ

σ

D−→ TW (1),
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where TW (1) is the Tracy-Widom distribution of order 1 (cf. Tracy and Widom [1996]), and

µ, σ are defined as follows:

µ = 2 log

(︃
tan

(︃
φ+ γ

2

)︃)︃
σ3 =

16

(m+ n+ 1)2
(︁
sin2(φ+ γ) sinφ sin γ

)︁−1
,

where

sin2(γ/2) =
min(p, n)− 1/2

m+ n+ 1

sin2(φ/2) =
max(p, n)− 1/2

m+ n+ 1
.

4.3.2 Tracy-Widom Empirical Estimator

Unfortunately, in the singular setting, the marginal distribution of the largest root is not as

well-understood. Crucially, the results from both Johnstone [2008] and Chiani [2016] depend

on the non-singularity of the matrix A, and therefore they cannot readily be applied to the

singular setting.

As highlighted in the introduction, a common approach to computing p-values when the null

distribution is unknown is to use a permutation procedure. But high precision requires a

large number of permutations, and therefore is computationally burdensome. In this section,

we show that we can drastically reduce the number of permutations by using Johnstone’s

theorem above as inspiration.

We suggest an empirical estimator for approximating the CDF of the largest root. Indeed,

we propose to estimate the distribution using a location-scale family of the Tracy-Widom

distribution of order 1 indexed by two parameters (µ, σ). Algorithm 3 below describes our
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approach.

Algorithm 3 Tracy-Widom empirical estimator of the largest root distribution.
1: For a double Wishart problem associated with matrices Y and X:
2: for k = 1 to K do
3: Perform a permutation procedure on Y and X.
4: Compute the largest root λ(k) of the corresponding double Wishart problem.
5: end for
6: Transform the roots λ(1), . . . , λ(K) to the logit scale.
7: Using a fitting procedure, find the estimates µ̂ and σ̂ of the location and scale parameters,

respectively.
8: Approximate the CDF of the largest root using the CDF of σ̂TW (1) + µ̂.

A few comments are required:

• As we will show in Section 4.4, the number of permutations K can be chosen to be

relatively small while retaining good performance.

• The appropriate permutation procedure on Line 3 depends on the particular double

Wishart problem being studied. For a test of association between Y and X, we typically

permute the rows of Y and keep those of X fixed. The test of equality of covariance

matrices requires a different strategy, and we give all the relevant details in Section 4.4.2

below.

• Line 7 of Algorithm 3 refers to a fitting procedure. In Section 4.4.1, we investigate four

different approaches: Method of moments; Maximum Likelihood Estimation; and Max-

imum Goodness-of-Fit estimation [Luceño, 2006] using the Anderson-Darling statistic

and a modified version that gives more weight to the right tail. Details about this latter

approach, including computational formulas of these statistics, are given in Section B.2

of the Supplementary Materials.

Therefore, we propose this location-scale transformation of the Tracy-Widom distribution

as a suitable parametric family for estimating the distribution of the largest root in singular

double Wishart problems.
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4.4 Simulation results

To investigate the performance of our empirical estimator, we performed two simulation stud-

ies: 1) we compared the distribution obtained from our empirical estimator to an empirically

generated cumulative distribution function (CDF), as described below, for different number

of permutations K and using four different fitting strategies; 2) we compared p-values de-

rived from the estimated distribution to those obtained through a permutation procedure.

The first simulation study is aimed at assessing the performance of our empirical estimator

over the whole range of the distribution; the second simulation study specifically looks at

the upper tail of the distribution and therefore at the validity of the resulting p-values.

4.4.1 Comparison to the true distribution

Since the distribution function of the largest root distribution is not available analytically,

we cannot use an analytical function as the benchmark for the “true” CDF. Therefore, an

estimate of the true distribution was derived computationally. Specifically, we started by

generating 1000 pairs of singular Wishart variates A ∼ Wp(Σ,m),B ∼ Wp(Σ, n) as follows:

each singular Wishart variate was generated by first generating a sample of multivariate

normal variates Z1, . . . , Zm ∼ Np(0,Σ), and then defining A =
∑︁

ZT
i Zi; the Wishart vari-

ate B was generated similarly. For each pair of Wishart variates, we then computed its

corresponding largest root using truncated SVD (cf. Section B.1 of the Supplementary Ma-

terials). From these 1000 largest roots, we calculated the empirical CDF for the marginal

distribution: this estimate was considered our benchmark for assessing the performance of

our approach.

For our simulations, we fixed the degrees of freedom m = 96 and n = 4. In the context of a

one-way MANOVA, this would correspond to four distinct populations and a total sample

size of 100; in the context of CCA, this would correspond to one set of variates of dimension

4 (the dimension of the other is p), and a total sample size of 99. We also fixed the scale
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matrix Σ = Ip, but we varied the parameter p = 500, 2000.

To compute the Tracy-Widom empirical estimator, we sampled K of these largest roots (with

K = 25 or 100) and fitted the location-scale family as described in Algorithm 3. Finally,

we looked at four different fitting strategies: the method of moments (MM); Maximum

Likelihood Estimation (MLE); and Maximum Goodness-of-Fit estimation [Luceño, 2006]

using the Anderson-Darling statistic (AD) and a modified version that gives more weight to

the right tail (ADR).

The simulation results appear in Figure 4.1. As we can see, with a larger number of samples

K, all four methods estimate the distribution of the largest root reasonably well; on the

other hand, for a smaller value of K, the method of moments clearly outperforms the other

fitting strategies. For this reason, unless otherwise stated, we use the method of moments

in the remainder of this article.

4.4.2 Comparison of p-values

Next, we used our empirical estimator to compute p-values for three double Wishart prob-

lems: a test of equality of covariances, CCA, and PCEV. In all settings, we performed 100

simulations, and we fixed the sample size at n = 100. We also used K = 100 permutations

to fit the Tracy-Widom empirical estimator using the method of moments. Finally, we com-

pared our approach to a permutation procedure with 500 permutations. As a reference, we

summarise the parameters for all simulation scenarios appear in Table 4.1.

Method Dimension q of X Dimension p of Y Association
structure

Association
parameter

Equality of
covariance 200, 300, 400, 500 200, 300, 400, 500

ΣX = Iq
Autoregressive ΣY

ρ = 0, 0.2, 0.5

CCA 200, 300, 400, 500 Fixed at 20 (ΣXY )ii = ρ for i = 1, 2,
(ΣXY )ij = 0 otherwise ρ = 0, 0.2, 0.5

PCEV Fixed at 1 200, 300, 400, 500 Linear model R2 = 0%, 1%, 5%

Table 4.1: Values of the parameters for all simulation scenarios
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p = 2000

K = 25

p = 2000

K = 100

p = 500

K = 25

p = 500

K = 100

0.05 0.06 0.07 0.08 0.05 0.06 0.07 0.08

0.25 0.30 0.35 0.40 0.25 0.30 0.35 0.40
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Largest root

C
D

F

Method AD ADR MLE MM True CDF

Figure 4.1: Approximation to the CDF: Tracy-Widom empirical estimator, using four
different fitting strategies, compared to the “true CDF” (derived through computational
means). AD: Anderson-Darling; ADR: right-tail-weighted Anderson-Darling; MLE: Maxi-
mum Likelihood Estimation; MM: Method of Moments.
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Test of equality of covariances

For the test of equality of covariances, we simulated two datasets X ∼ Np(0, I) and Y ∼

Np(0,Σ), both with n = 100 observations. We selected an autocorrelation structure for the

covariance matrix Σ, with Cov(Yi, Yj) = ρ|i−j|. We varied two parameters: 1) the dimension

p = 200, 300, 400, 500 of both X and Y ; and 2) the correlation parameter ρ = 0, 0.2, 0.5.

Note that ρ = 0 corresponds to the null hypothesis of the same covariance, and ρ = 0.2, 0.5

correspond to alternative hypotheses.

The permutation procedure for testing the equality of covariance matrices started by centring

both X and Y . Then, the observations were permuted between X and Y : that is, a valid

permutation would sample 50 observations from both X and Y to create a permuted X, and

the remaining 50 observations from X and Y were used to create a permuted Y . The results

are summarised using QQ-plots (see Figure 4.2). The computations were performed using

the R package covequal.

The simulation results appear in Figure 4.2. As we can for these QQ-plots, there is excellent

agreement between the p-values obtained from a permutation procedure and those obtained

from the Tracy-Widom empirical estimator.

CCA

For CCA, we again simulated two datasets X ∼ Nq(0, I) and Y ∼ Np(0, I), both with

n = 100 observations, and with fixed q = 20. We selected an exchangeable structure with

parameter ρ for the covariance matrix Cov(X, Y ). We again varied two parameters: 1) the

dimension p = 200, 300, 400, 500 of X; and 2) the correlation parameter ρ = 0, 0.2, 0.5. As

above, the value ρ = 0 corresponds to the null hypothesis of no association between X and

Y , and the values ρ = 0.2, 0.5 correspond to alternative hypotheses. Finally, the permutation

procedure consisted in permuting the rows of X and keeping those of Y fixed.

The simulation results appear in Figure 4.3. As above, there is excellent agreement between
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Figure 4.2: Equality of covariance: QQ-plots comparing the p-values obtained from a
permutation procedure to those obtained from the Tracy-Widom empirical estimator.
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the p-values obtained from a permutation procedure and those obtained from the Tracy-

Widom empirical estimator.

PCEV

For PCEV, we looked at the following high-dimensional simulation scenario: we fixed the

number of observations n = 100 and a balanced binary covariate X. We then varied the

number of response variables p = 200, 300, 400, 500, and fixed the covariance structure of the

error term ΣR = Ip. We induced an association between X and the first 50 response variables

in Y . This association was controlled by the parameter R2 = 0%, 1%, 5%; this parameter is

related to the univariate regression coefficient β through the following relationship:

β2 =
R2

1−R2
.

As above, we summarised the results using QQ-plots (Figure 4.4). The computations were

performed using the R package pcev [Turgeon et al., 2018b]; the methodology presented here

is part of the package starting with version 2.1.

The simulation results appear in Figure 4.4. Once again, there is excellent agreement between

the p-values obtained from a permutation procedure and those obtained from the Tracy-

Widom empirical estimator.

As we can see, our Tracy-Widom empirical estimator yields valid p-values in a variety of

high-dimensional scenarios that include both null and alternative hypotheses. For further

simulation results, see Section B.3 of the Supplementary Materials.

4.5 Data analysis

To showcase our ideas in the context of a real analysis of a high-dimensional dataset, we

decided to look at the association between DNA methylation and disease type in patients with

106



●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●● ●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

rho = 0 rho = 0.2 rho = 0.5

p =
 200

p =
 300

p =
 400

p =
 500

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Heuristic p−value

P
er

m
ut

at
io

n 
p−

va
lu

e

Figure 4.3: CCA: QQ-plots comparing the p-values obtained from a permutation procedure
to those obtained from the Tracy-Widom empirical estimator.
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Figure 4.4: PCEV: QQ-plots comparing the p-values obtained from a permutation proce-
dure to those obtained from the Tracy-Widom empirical estimator.
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four systemic auto-immune rheumatic diseases: Scleroderma, Rheumatoid arthritis, Systemic

lupus erythematosus, and Myositis. DNA methylation is an epigenetic mark, meaning that

it is a chemical modification of the DNA that does not alter the nucleotide sequence [Baylin,

2005]. It is known to be associated with changes in RNA transcription, and it is therefore

correlated with gene expression.

The DNA methylation used for this analysis was measured prior to treatment on T-cell

samples from 28 patients using the Illumina 450k platform [Hudson et al., 2017]. Baseline

characteristics of the patients appear in Table 4.2.

Scleroderma Other diseases
(n = 14) (n = 14)

Age Mean (sd) 48 (16) 52 (14)
Female (%) 50% 71%

Table 4.2: Baseline characteristics

We opted to test for differential methylation between scleroderma and the other three dis-

eases at the pathway level : from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[Kanehisa et al., 2017], we extracted the list of genes included in their manually curated

list of molecular pathways; these pathways correspond to networks of genes interacting and

reacting together as part of a given biological process. For each of the 320 pathways, we

then identified all CpG dinucleotides contained in at least one gene of this pathway. All CpG

dinucleotides mapped to a given pathway were analysed jointly. The extraction of gene lists

was performed using the R package KEGGREST [Tenenbaum, 2017].

For each pathway, we thus have two datasets: an n×p matrix Y that contains the methylation

values at all p CpG dinucleotides (where p ranges from 39 to 21,640 over the 320 pathways)

and an n×1 matrix X indicating whether an individual has scleroderma. Recall that n = 28,

and therefore all pathways lead to a high-dimensional dataset. The analysis performed had

two steps: first, we did a test of equality for the covariance matrices between both disease

groups; then we used PCEV to test for differential methylation between these two groups.
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The PCEV analysis included both age and sex as possible confounders [El-Maarri et al.,

2007, Horvath, 2013]. For both steps, the Tracy-Widom empirical estimator was computed

using 50 permutations of the data.

Since we repeated the same analysis independently for all 320 pathways, we need to account

for multiple comparison. However, since a given gene may appear in multiple pathways, the

320 hypothesis tests are not independent; therefore, a naive Bonferroni correction would be

too conservative. To estimate the effective number of independent tests, we looked at the

average number of pathways in which a given CpG dinucleotide appears. Overall, 134,941

CpG dinucleotides were successfully matched to at least one of 320 KEGG pathways. On

average, each dinucleotide appeared in 4.5 pathways; this leads to effectively 70 independent

hypothesis tests. For a nominal family-wise error rate of α = 0.05, an appropriate Bonferroni-

corrected significance threshold is therefore given by 7.14× 104.

We compared the p-value obtained from our procedure above to that obtained from a per-

mutation procedure; the latter is a common approach when the null distribution of a test

statistic is unknown but has the disadvantage of being computationally expensive. Given our

significance threshold, we determined that we needed to perform at least 10,000 permutations

in order to be able to assess significance.

In Table 4.3, we present the five most significant pathways, with the top pathway achieving

overall significance for the test of differential methylation. None of the covariance equality

tests yielded a significant p-value; to improve clarity, we omitted these results from the

table.

For the most significant pathway (i.e. Glutamatergic synapse), we computed the Variable

Importance Factor (VIF) and compared them to the p-values obtained from a univariate ap-

proach where each CpG dinucleotide is tested individually against the disease outcome [Tur-

geon et al., 2018b]. The VIF is defined as the correlation between the individual response

variables and the principal component maximising the proportion of variance. The compari-
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KEGG code Description # CpGs Tracy-Widom
P-value

Permutation
P-value

path:hsa00120 Glutamatergic synapse 225 1.91× 10−4 7.00× 10−4

path:hsa03040 Ras signaling pathway 2119 1.33× 10−3 1.40× 10−3

path:hsa03450 Circadian rhythm 267 1.52× 10−3 1.00× 10−4

path:hsa00563 Histidine metabolism 394 1.59× 10−3 3.00× 10−4

path:hsa04380 Pathogenic E. coli infection 2312 1.65× 10−3 5.20× 10−3

Table 4.3: Data analysis: Five most significant pathways based on our empirical estimator.
The Tracy-Widom p-values are compared to p-values obtained from a permutation procedure.
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Figure 4.5: path:hsa00120—Glutamatergic synapse: Comparison of Variable Impor-
tance Factor and 225 univariate p-values for the most significant pathway.

son is presented in Figure 4.5. As previously showed in the literature [Turgeon et al., 2018b],

there is some degree of agreement between these two measures of association. Moreover, we

can see evidence that the overall association between this pathway and our disease indicator

is driven by a few CpG dinucleotides.

4.6 Extension to linear shrinkage covariance estimators

In Section 4.4, we presented graphical evidence that our proposed Tracy-Widom empirical

estimator provides a good approximation of the distribution of the largest root of the de-
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terminantal equation 4.1. As discussed in Section 4.2, the estimates of the matrices A,B

appearing in this equation often involve high-dimensional covariance matrices. However, a

common problem with such high-dimensional covariance matrices is their instability [Pourah-

madi, 2013, Chapter 1]. As a result, the power of statistical tests derived from the double

Wishart problem decreases as the dimension of A and B increases. However, it would

seem that the Tracy-Widom empirical estimator relies on the assumption that A and B are

Wishart-distributed, and it is not clear a priori that this estimator can be applied with other,

more efficient estimators of the underlying high-dimensional covariances matrices.

One strategy for improving the stability of a covariance estimator is to use a shrinkage

estimator. One such estimator for the covariance matrix was introduced by Ledoit and

Wolf [2004]. In this section, we show that by replacing the matrix A by a linearly shrunk

version A∗ in Equation 4.1, our Tracy-Widom empirical estimator still provides a good

approximation of the distribution of the largest root.

Let A ∼ Wp(Σ, n), S = 1
n
A and I be the p × p identity matrix. Ledoit and Wolf [2004]

look for an optimal linear combination Σ∗ = ρ1I+ρ2S to estimate the population covariance

matrix; the optimality criterion is described in the following result:

Theorem 3. [Ledoit and Wolf [2004]] Let ∥ ·∥2 be the squared Frobenius norm, and let ⟨·, ·⟩

be its corresponding inner product. Consider the optimization problem:

min
ρ1,ρ2

E(∥Σ∗ − Σ∥2), such that Σ∗ = ρ1I + ρ2S,

where the coefficients ρ1, ρ2 are nonrandom. Its solution verifies:

Σ∗ =
β2µ

δ2
I +

α2

δ2
S,

E(∥Σ∗ − Σ∥2) = α2β2

δ2
,
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where

µ = ⟨Σ, I⟩, α2 = ∥Σ− µI∥2, β2 = E(∥S − Σ∥2), and δ2 = E(∥S − µI∥2).

Furthermore, Ledoit and Wolf [2004] provide consistent estimators for all quantities µ, α2, β2, δ2

under mild conditions that hold true for normal random variables, and therefore hold true in

our setting. The resulting estimator for Σ is denoted S∗, and we thus get a linearly shrunk

A∗ = nS∗.

To assess the performance of our Tracy-Widom empirical estimator under this extended

setting, we repeated the simulations from Section 4.4.1 but by substituting the matrix A

with its linearly shrunk equivalent A∗. The results appear in Figure 4.6, and they are very

similar to the earlier results; we get good agreement even with small values of K, and the

method of moments provides a better approximation than the other fitting procedures.

4.7 Discussion

In this work, we investigated the singular double Wishart problem, which arises in the mul-

tivariate analysis of high-dimensional datasets. We presented an empirical estimator of the

distribution of the largest root that is simple, efficient, and valid for high-dimensional data.

Through simulation studies, we showed how our approach leads to a good approximation of

the true distribution, and we also showed that it leads to valid p-values. Finally, using a

pathway-based approach, we analysed the relationship between DNA methylation and dis-

ease type in patients with systemic auto-immune rheumatic diseases. Our analysis used the

empirical estimator in two settings: a test for the equality of covariance matrices, and with

the dimension-reduction method known as PCEV.

The empirical estimator we presented fills a gap in high-dimensional multivariate analysis.

Many common methods, such as MANOVA and CCA, fit into the framework of double
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Figure 4.6: Approximation to the CDF under a linearly shrunk A: Heuristic, using
four different values for the number of permutations, compared to the true CDF
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Wishart problems. However, classical hypothesis testing breaks down in high dimensions, and

therefore analysts often rely on computationally intensive resampling techniques to perform

valid inference. For example, genomic studies often require significance thresholds of the

order of 10−6 and lower in order to correct for multiple testing. In this context, a permutation

procedure would require at least 1 million resamples. By relying on results from random

matrix theory, we can drastically cut down the required number of permutations. Since

we only need to estimate two parameters from a location-scale family, good approximation

is achieved with less than 100 permutations. Critically, this number is independent of the

number of tests performed, and therefore the computation time is reduced by several orders

of magnitude.

We motivated our empirical estimator of the CDF using an approximation theorem of John-

stone [2008]. Our approach is further motivated by several results from random matrix theory

that suggest a central-limit-type theorem for random matrices, with the Tracy-Widom dis-

tribution replacing the normal distribution [Deift, 2007]. More evidence in support of our

empirical estimator is given from the study of the largest root of Wishart variates. On the

one hand, Srivastava [2007] and Srivastava and Fujikoshi [2006] showed that the asymp-

totic distribution of λmax is approximately equal to the distribution of the largest eigenvalue

of a scaled Wishart matrix. On the other hand, several results analogous to Johnstone’s

theorem were also derived for Wishart distributions. Indeed, it has been shown that if λ1

is the largest root of a Wishart variate, then there exists µ, σ, both functions of the pa-

rameters of the Wishart distribution, such that the ratio λ1−µ
σ

converges in distribution to

TW (1) [Johansson, 2000, Johnstone, 2001, El Karoui, 2003, Tracy and Widom, 2009].

Finally, the results from Section 4.6 show that the domain of applicability of our empirical

estimator extends beyond that of a strict double Wishart problem. Specifically, we showed

that we can replace the matrix A in Equation 4.1 by a linearly shrunk estimator based on

earlier work by Ledoit and Wolf [2004]. This approach can easily be applied to multivariate
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analysis approaches for which A is explicitly the covariance matrix of a multivariate random

variable. Examples include the test of equality of covariance matrices and PCEV. However,

more care is required in order to use these results with CCA.
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Chapter 5

Region-based analysis of DNA

methylation and anti-citrullinated

protein antibody levels using Principal

Component of Explained Variance

Preamble to Manuscript 3. One of my supervisors, Celia Greenwood, recently col-

laborated on a study that looked at the association between DNA methylation levels and

anti-citrullinated protein antibody (ACPA) levels in individuals without clinical manifesta-

tions of Rheumatoid Arthritis (RA) [Shao et al., 2018]. ACPA is an antibody thought to be

a predictor of RA onset. The statistical analysis performed was standard: CpG nucleotides

were tested for significance with ACPA status (positive or negative) one at a time. However,

the bisulfite sequencing platform used naturally grouped the CpG dinucleotides into small

genomic regions. Indeed, these regions were explicitly targeted by the sequence capturing

process. And as I described in the preamble to Chapter 3, correlation between the methy-

lation levels of CpG dinucleotides is largely driven by base-pair distance. As a consequence,
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significant correlation between the methylation levels within a region was ignored, reducing

the efficiency of the univariate tests. Hence, the DNA methylation dataset of Shao et al.

[2018] seemed an excellent opportunity to use PCEV and perform global association tests at

the region level.

When I started to analyse the data, it became clear that the empirical estimator described

in Chapter 4 would be required for some of the regions. Indeed, some regions contained more

CpG dinucleotides than observations. Moreover, due to the presence of missing data induced

from samples with zero reads, several observations needed to be removed from these analyses,

making the high-dimensional problem more acute. Therefore, the analysis presented in this

chapter applies many of the ideas discussed in the previous chapters. Results of this analysis

are part of ongoing investigations with colleagues.
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Abstract

A recent nested case-control study looked at the association between DNA methylation and

anti-citrullinated protein antibody (ACPA) levels, a key serological marker of rheumatoid

arthritis (RA) risk. The methylation levels were measured using a novel targeted sequenc-

ing technique that naturally grouped the CpG dinucleotides into genomic regions; however,

the association tests were performed one CpG dinucleotide at a time, without taking this

grouping into account. In this article, we show how Principal Component of Explained Vari-

ance (PCEV) can be used to jointly analysed the ACPA levels and the methylation levels of

CpG dinucleotides within a given region. PCEV is a dimension reduction method that seeks

the linear combination of the methylation values that maximises the proportion of variance

explained by the ACPA levels. The estimation procedure also takes into account additional

variables and potential confounders (e.g. age, sex, cigarette smoking, cell-type composition).

We build on recent work that provides a computationally efficient framework for computing

p-values, even when the number of CpG dinucleotides within a region exceeds the number

of observations. We show that our joint analysis uncovers differentially methylated regions

(DMRs) that were missed by the univariate approach.
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5.1 Motivation

Rheumatoid arthritis (RA) is an autoimmune disorder that primarily manifests itself with

inflammation of the synovial joints [Carmona et al., 2010]. There are multiple genetic

and environmental risk factors associated with RA. Furthermore, there is evidence of gene-

environment interactions in the aetiology of the disease [Brennan and Silman, 1994, Karlson

et al., 2010]. In turn, there is evidence that the role of environmental factors in the pro-

gression of RA is mediated through epigenetic factors, such as DNA methylation [Liu et al.,

2013, Petronis, 2010]. DNA methylation is a chemical change of the DNA molecule that does

not alter its sequence information. Methylation can repress gene transcription, and therefore

it is related to one of the main mechanisms for cell-type diversity Goll and Bestor [2005],

Klose and Bird [2006].

Due to its slow progression, the exact date of RA onset is sometimes difficult to estab-

lish [Raza and Gerlag, 2014]. This is critical: early treatment targeting remission is asso-

ciated with improved long term functional outcomes (reduction of joint damage and lower

risk of disability).

A molecular marker that has gained a lot of attention over the last decade is the anti-

citrullinated protein antibody (ACPA). Citrullination is a biochemical process whereby the

structure of a protein is slightly altered at a specific amino-acid residue (i.e. arginine). How-

ever, this small local change can have larger impacts on the folding patterns of the pro-

tein [Nicholas et al., 2017]. In turn, this change can become antigenic and hence elicit an

immune response from the body; this process then gives rise to elevated levels of ACPA.

Several cohort studies have shown that elevated levels of ACPA can be detected early in

patients with RA, even before any clinical manifestation [Forslind et al., 2004, Mateen et al.,

2016]. Understanding the relationship between methylation and ACPA levels in individuals

without clinical manifestations of RA could inform on causal pathways, which could in turn

lead to novel treatment targets.
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To assess the association between ACPA levels and DNA methylation, a nested case-control

study was recently performed on individuals randomly selected from the CARTaGENE co-

hort (cartagene.qc.ca). Firstly, ACPA status was determined for the set of randomly

sampled individuals, and then DNA methylation was measured among two subsamples of

individuals: those with either high or low ACPA status. Methylation levels were measured

using a novel next-generation sequencing technique called methylation capture sequencing

(MCC-Seq) [Shao et al., 2018]. The sequencing methodology targeted regions of the genome

that were deemed by the authors to be potentially relevant to the study of autoimmune

diseases, and therefore relevant to the study of RA. Although Shao et al. identified many

CpG dinucleotides with evidence of an association with ACPA status (defined as high or low

levels), their analysis was based on a univariate approach, i.e. analysing one CpG at a time,

and therefore they did not leverage the natural correlation within these pre-defined regions.

Ignoring this information may have resulted in lower statistical power than a multivariate

strategy.

In this article, we use a multivariate approach to improve statistical power. Specifically, we

use Principal Component of Explained Variance (PCEV) to analyse all CpG dinucleotides

within a targeted region jointly. PCEV is a dimension reduction method whose objective

is to find the linear combination of the response variables (e.g. methylation levels) that

maximises the proportion of variance explained by the covariates (e.g. ACPA levels). We

build on recent work by Turgeon et al. [2018a] to provide a hypothesis testing framework

that applies to all regions, even when the number of CpG dinucleotides p is greater than the

number of observations n.

The rest of this article is structured as follows: in the next section, we describe in detail our

motivating dataset, and we cover the necessary methodological concepts alluded to in this

introduction. Results are presented in Section 5.3 and discussed in Section 5.4. All methods

used in this manuscript have been implemented in the R package pcev.
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5.2 Methods

In this section, we give a high-level description of MCC-Seq so that the inputs to the analysis

are clear. We then review PCEV and describe how it is used in our given context.

5.2.1 Data

DNA methylation is an epigenetic mark, i.e. a chemical modification of DNA that does not

alter the sequence information. A common way to measure DNA methylation is via bisulfite

sequencing: for every CpG covered by the sequencing library, and for each biological sample,

we obtain a certain number M of methylated reads and a certain number U of unmethylated

reads. The methylation level can then be represented as the proportion π = M/(U +M) of

methylated reads.

Using collected sera from a random subset of CARTaGENE subjects, the original study

identified 69 ACPA positive subjects (ACPA levels above 20 units), representing around 2%

of the randomly sampled individuals. The ACPA positive individuals were then matched

for age, sex and smoking status to ACPA negative subjects (ACPA levels less 20 units).

Whole blood from ACPA positive (N=63) and negative subjects (N=66) was used to extract

DNA for the analyses. Proportions of the common blood cell types were available for all

individuals in the dataset.

DNA methylation in the selected samples from CARTaGENE was measured using a recently

developed high-throughput technique called methylation capture sequencing (MCC-Seq).

For complete details, we refer the reader to Allum et al. [2015] and Cheung et al. [2017]. As

opposed to whole-genome bisulfite sequencing, which essentially measures methylation levels

at all CpG dinucleotides in the genome, MCC-Seq was developed to target pre-specified

regions of the genome. In our setting, the regions were selected to cover areas of the genome

that are relevant to immune diseases, e.g. gene promoters, methylation footprint regions

observed in blood, and blood-cell-lineage specific enhancer regions [Shao et al., 2018].
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The dataset included 4,219,158 CpG dinucleotides contained in 438,843 genomic regions.

We removed all CpG dinucleotides for which coverage was zero for at least 50% of the

individuals. After data cleaning, we were left with 179,701 CpG dinucleotides located in

23,350 regions.

5.2.2 Principal Component of Explained Variance

As described above, the methylation data is naturally grouped into genomic regions. Next,

we explain how we can test for global association between methylation levels within a region

and ACPA levels. Let Mijk, Uijk be the number of methylated and unmethylated reads,

respectively, for individual i at CpG j in region k. Let Nijk = Mijk + Uijk be the total

number of reads (also known as the coverage or depth), and let πijk = Mijk/Nijk be the

methylated proportion.

As the notation suggests, the depth Nijk varies between CpG dinucleotides (for a fixed indi-

vidual) and between individuals (for a fixed CpG dinucleotide). Accordingly, a larger value

of Nijk translates into more certainty around the methylated proportion πijk. Moreover,

the variance of πijk also depends on the number of methylated reads Mijk, leading to het-

eroscedasticity. To mitigate this effect on PCEV, we follow Park and Wu [2016], and we let

Yijk = arcsin(2πijk − 1) be the transformed methylated proportions. Under a beta-binomial

model for the proportion πijk, Park & Wu showed that the variance of Yijk only depends

on the number of reads Nijk and not on the mean of the underlying model, i.e. it is a

variance-stabilising transformation. The residual variance can readily be accommodated by

the PCEV model, as discussed next.

Let Yk be the n × pk matrix defined by (Yk)ij = Yijk; hence, we have n = 129 samples

and pk CpG dinucleotides in region k. Let X be the n-dimensional vector containing the

binary indicator for whether an individual is positive or negative for ACPA. Finally, let Z

be the matrix containing the intercept, as well as data on additional variables and potential
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confounders. We assume that the relationship between X and Yk can be represented via a

linear model:

Yk = βT
k X+ ΓkZ+ Ek,

where βk,Γk are the matrices of regression coefficients, and Ek is the matrix of residuals.

PCEV seeks a linear combination of the outcome variables, wTYk, that maximises the pro-

portion R2(w) of variance being explained by the covariate X:

ŵk = argmax
w∈Rpk :∥w∥=1

R2(w),

where

R2(w) =
Var(wTβT

k X)

Var(wTβT
k X) + Var(wTEk)

. (5.1)

In the equation above, the numerator corresponds to the variance of the covariates, and the

denominator corresponds to the variance of the response variable (after adjusting for Z).

Turgeon et al. [2018b] have further details on this dimension-reduction technique.

To account for the residual variance alluded to in the previous paragraph, we assume that

the data-generating process giving rise to the depth Nijk does not depend on individual i. As

a consequence, the residual variance can be estimated as part of the diagonal of the residual

variance matrix E.

As is common with sequencing data, the coverage Nijk can sometimes be identically zero. In

turn, this implies that the corresponding methylated proportion πijk is unknown. To fit the

linear model even in the context of missing data, we opted for a complete-case analysis, i.e.

for a given region k, only observations without missing values were retained. Therefore, the

effective sample size for region k was nk ≤ n.

When pk > nk, we use a truncated Eigenvalue Decomposition (EVD) to maximise R2(w) [Tur-

geon et al., 2018a]. Let VM = Var(wTβT
k X), VT = Var(wTβT

k X) + Var(wTEk). Let r be the

rank of VT , with r ≤ pk. From ordinary EVD, we know there exists an orthogonal matrix T
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of the same dimension as VT such that

D = T TVTT

is a diagonal matrix with exactly r nonzero values on the diagonal. Let D[r] be the diagonal

matrix obtained from D by keeping only those nonzero elements, and let T[r] be the pk × r

matrix defined by keeping only the columns of T corresponding to the nonzero elements of

the diagonal of D. If we write T̃ = T[r]D
−1/2
[r] , we get

T̃ TVT T̃ = Ir.

We can then use ordinary EVD a second time and diagonalise T̃ TVM T̃ using an orthogonal

transformation T ′. Therefore, if we let S = T̃ T ′, we get

STVMS = Λ

STVTS = Ir,

where Λ is again a diagonal matrix. The largest diagonal element of Λ is equal to the

maximum of R2(w). Moreover, the column of S corresponding to this largest diagonal

element is the vector w at which R2(w) is maximised.

As additional variables in Z, we included sex, age, cigarette smoking status, and cell-type

composition. These variables are all known to be associated with both methylation [Zhang

et al., 2011, Horvath, 2013, Lee and Pausova, 2013, McGregor et al., 2016] and rheumatoid

arthritis [Carmona et al., 2010].

To test for a global association between a region’s methylation levels and ACPA levels, we

use λ = maxR2(w) as a test statistic. Under the null hypothesis of no association, we

can approximate the distribution of λ (after a logit transformation) using a location-scale

126



ACPA positive (N=63) ACPA negative (N=66)

Age, mean (sd) 55.6 (8.1) 54.9 (7.5)

Female, N (%) 39 (61.9%) 42 (63.6%)

Current 14 (22.2%) 13 (19.7%)

Past 22 (34.9%) 26 (39.4%)Smoking Status, N (%)
Never 27 (42.9%) 27 (40.9%)

Table 5.1: Characteristics of individuals in the nested case-control study.

variant of the Tracy-Widom distribution of order 1 [Johnstone, 2008]. When nk ≥ pk,

these location and scale parameters can be computed exactly. When n < pk, Turgeon et al.

[2018a] showed how these parameters can be estimated using a small (i.e. around 50) number

of permutations. Therefore, under both the classical and the high-dimensional scenario, we

have a computationally efficient way of obtaining p-values. In other words, we do not need

to rely on a full permutation procedure to perform inference.

5.3 Results

In Table 5.1, we can see a summary of the baseline characteristics of our subjects, providing

evidence that matching was successful.

We performed PCEV independently on these 23,350 regions. The median number of regions

per chromosome was 1034, with a minimum of 386 and a maximum of 2101. On average,

a region contained 8 CpGs, with a minimum of 1 and a maximum of 127. However, after

removing CpG sites with too much missing data and then observations with missing methy-

lation values, the number of available subjects per region was typically lower than 129. On

average, there were 48 observations per regions, with a minimum of 8 and a maximum of

128. Overall, 2519 regions had more CpGs than observations; this corresponds to 11% of

all regions. These regions can be considered as high-dimensional datasets, and therefore we

decided to use the method in Turgeon et al. [2018a] to efficiently compute p-values. For

127



all other regions, p-values were computed using the approximation to the null distribution

described in Johnstone [2008] (see also Turgeon et al. [2018b]).

Given the number of regions, a Bonferroni correction for a Family-Wise Error Rate (FWER)

of α = 0.05 yields a cutoff point of 2.14 × 10−6. At this level, 1062 regions were deemed

statistically significant. A Manhattan plot depicting the results is presented in Figure 5.1.

Note that the smallest p-value that can be estimated using the implementation of the Tracy-

Widom distribution in R corresponds to 3.4 × 10−8. This limitation explains why several

p-values are aligned at the top of the graph. Further details on the top 25 most significant

results appear in Table 5.2 (the regions are arranged according to the value of the test

statistic). Moreover, the Supplementary Material contains information on the most frequent

gene ontology terms appearing among the significant regions.

To better understand the overall significance of the association between methylation levels

within a region and the levels of ACPA, we can look at the variable importance factors

(VIF). These factors are defined as the absolute value of the (Pearson) correlation between

a variable and the estimated PCEV component. As shown in [Turgeon et al., 2018b], the

VIF serves as a proxy of the univariate association test, and it can therefore be used to rank

the contribution of each CpG to the overall association. In Figure 5.2, we can see the VIF

plots for the top 4 most significant regions.

We compared our results to a univariate approach. Specifically, we fitted a linear regression

between the (transformed) methylation levels Yijk and the ACPA levels for each CpG dinu-

cleotide. We also included the same additional variables as for the PCEV analysis (i.e. age,

sex, cigarette smoking status, cell type composition). As for the PCEV analysis, we per-

formed a complete-case analysis: for a given CpG dinucleotide, we removed all subjects with

missing data. Of the 175,399 CpG dinucleotides in the data, 42 were significant (Bonferroni-

corrected threshold for FWER of α = 0.05: 2.85×10−7). Figure 5.3 shows a Manhattan plot

summarising these results. The 42 significant CpG dinucleotides were located in 5 regions.
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Figure 5.1: Manhattan plot of the results. The red horizontal line corresponds to a
Bonferroni-corrected FWER of α = 0.05.
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Chromosome Position # CpGs # Obs. Test statistic P-value

chr18 77638264 16 22 50.14 < 3.4× 10−8

chr14 95893508 7 13 49.79 < 3.4× 10−8

chr6 30095549 15 21 49.76 < 3.4× 10−8

chr9 97109858 10 16 49.63 < 3.4× 10−8

chr22 16404641 8 14 49.42 < 3.4× 10−8

chr16 2030427 15 21 49.41 < 3.4× 10−8

chr2 131010441 9 15 49.32 < 3.4× 10−8

chr2 162270916 12 18 48.62 < 3.4× 10−8

chr13 19240446 14 20 47.90 < 3.4× 10−8

chr15 20104458 5 10 47.88 < 3.4× 10−8

chr18 77616688 11 17 46.87 < 3.4× 10−8

chr11 1268962 8 14 46.75 < 3.4× 10−8

chr2 70369949 2 60 46.64 < 3.4× 10−8

chr10 46096070 13 19 45.85 < 3.4× 10−8

chr1 1840867 5 11 45.42 < 3.4× 10−8

chr20 62917260 10 15 45.33 < 3.4× 10−8

chr2 172970966 11 17 45.31 < 3.4× 10−8

chr4 120133845 2 58 45.11 < 3.4× 10−8

chr2 241585756 8 14 45.01 < 3.4× 10−8

chr19 58446424 15 20 44.67 < 3.4× 10−8

chr13 19172150 8 13 44.45 < 3.4× 10−8

chr19 53324227 16 22 44.39 < 3.4× 10−8

chr6 25652562 9 14 44.39 < 3.4× 10−8

chr11 20229567 6 11 44.10 < 3.4× 10−8

chr5 1641001 5 11 43.86 < 3.4× 10−8

Table 5.2: Top 25 most significant regions ordered by test statistic: the position corresponds
to the left-most CpG dinucleotide (relative to the p arm of the chromosome). We show the
number of CpGs analysed as well as the number of individuals included in the analysis of
the region, after removing missing data. All p-values correspond to the lowest resolution
possible with the Tracy-Widom empirical estimator.
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Figure 5.2: Variable Importance Factor (VIF) plots for the top 4 most significant regions.
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Figure 5.3: Manhattan plot of the univariate results. The red horizontal line corresponds to
a Bonferroni-corrected FWER of α = 0.05.

However, none of the PCEV p-values corresponding to these regions are significant. Finally,

we also compared the univariate and the PCEV p-values (see Figure 5.4). In order to ob-

tain a single p-value for each region, we took the minimal univariate p-value and applied a

Bonferroni correction for the number of CpG dinucleotides in the region. Points appearing

below the diagonal corresponds to regions for which the PCEV p-value was smaller than the

univariate p-value.

Finally, Figure 5.5 shows the VIFs for the 5 regions containing CpG dinucleotides that were

deemed significant by the univariate approach. Note that after accounting for missing data

within the PCEV framework, methylation levels for some CpG dinucleotides were constant

across samples, and therefore VIFs could not be measured. This explains why Figure 5.5
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Figure 5.4: Comparison of PCEV and univariate p-values. Both methods used a complete-
case analysis.
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Figure 5.5: Variable Importance Factor (VIF) plots for the 5 regions containing CpG dinu-
cleotides with significant univariate p-values (marked as red triangles).

contains less than 42 red triangles.

5.4 Discussion

In this article, we showed how the dimension reduction method PCEV can be used to perform

region-based analyses of DNA methylation. Our example focused the association between

DNA methylation and ACPA levels in asymptomatic subjects, where elevated ACPA is

thought to be a precursor state for RA. The methylation levels were measured using a

novel sequencing technique, and the CpG dinucleotides were naturally grouped into genomic

regions. Multivariate analysis methods like PCEV can help leverage the natural correlation

patterns between neighbouring CpG dinucleotides to obtain efficient test statistics for region-

level association tests.

In DNA methylation analyses, there are a number of additional variables for which we

typically need to control. On the one hand, matching was used to control for sex, age, and

cigarette smoking status. On the other hand, the multivariate linear regression framework
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on which PCEV is built was used to control for differences in blood-cell type composition.

Nonetheless, sex, age, and cigarette smoking status were also added to the regression equation

to increase efficiency, as they help explain a significant portion of the observed variability in

DNA methylation levels. Adding them also helps account for any residual imbalances after

matching.

Figure 5.1 highlights a computational limitation of our approach. The smallest p-value that

can be measured corresponds to 3.4 × 10−8. This is a consequence of the maximum accu-

racy level that was chosen when implementing the Tracy-Widom distribution in the package

RMTstat. Indeed, the Tracy-Widom distribution can be defined as the solution to a certain

differential equation, and numerical methods were used to approximate it to the desired level

of accuracy. In the context of our study, this resolution still allowed us to make significance

statement even after a Bonferroni correction. Therefore, the only impact this limitation has

on our analysis is aesthetic. However, for studies requiring a higher resolution, there are

two possible ways of addressing this limitation: 1) obtain a more accurate approximation of

the Tracy-Widom distribution using the same numerical approach used for the development

of the RMTstat package; 2) use a result of Chiani [2014] to approximate the Tracy-Widom

distribution using a scaled and shifted gamma distribution. Alternatively, when computa-

tional efficiency is not a concern (e.g. when the number of regions is small), a permutation

procedure can also be used to estimate p-values at any desired level of accuracy.

By looking at the VIF plots, we can see how the individual contribution of CpG dinucleotides

to the overall significance can change from one region to the next. For example, the top row

of Figure 5.2 gives two examples of regions where multiple CpGs have a similar contribu-

tion. On the contrary, the bottom row highlights regions where a couple CpG seems to be

driving the overall association. This contrast is key to understanding the usefulness of mul-

tivariate methods: multiple, correlated moderate contributions can be combined to attain

overall significance. A univariate approach would potentially have dismissed these moderate
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correlations as being non-significant.

When comparing our approach to a univariate analysis, Figure 5.4 shows that the p-values

obtained by PCEV tended to be smaller. This is expected: PCEV leverages the correlation

pattern within a region to increase efficiency and statistical power. Unfortunately, due to

the amount of missing data, there was no overlap between the significant regions identified

by the two methods.

For both the univariate and PCEV analyses, we decided to perform a complete-case anal-

ysis, i.e. remove all observations with missing data. However, this approach has different

consequences on the two methods: for a given region, if observation 1 is missing methylation

value A, and observation 2 is missing methylation value B, both observations will be removed

from the PCEV analysis, whereas for the univariate analysis, each observation can still be

used for the analysis of any CpG for which it has a methylation level. As a consequence, the

PCEV analysis tended to remove more observations from the analysis than the univariate

approach. In turn, this contributed to some of the discrepancies in the results of the two

approaches. For example, after restricting the PCEV analysis to complete observations only,

the methylation levels of some of the remaining CpG dinucleotides were constant; that is, all

remaining observations had the same methylation proportions for some CpG dinucleotides.

This phenomenon occurred for some of the CpG dinucleotides deemed significant by the

univariate analysis, and as a result, they could not contribute to the overall significance of

the corresponding region. This is also illustrated in Figure 5.5, where less than 42 significant

CpG dinucleotides are highlighted.

The complete-case analysis is a very common approach to handling missing data, and it

corresponds to the default behaviour of the R function lm. Implicitly, we are making the

assumption that the data is missing completely at random (MCAR) [Rubin, 1976]. Indeed,

without this assumption, the estimators of the regression parameters are potentially biased

for their corresponding population-level parameters. In the context of high-throughput tech-
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nologies, an argument could be made that the MCAR assumption holds, at least partially.

Indeed, some level of technical defects is expected from these technologies, and in turn this

can lead to missing data. However, it is not clear that these technical errors account for

all observed missing data. Therefore, more research is required to understand how missing

data in next-generation sequencing studies departs from the MCAR assumption. Moreover,

future work includes extending PCEV beyond the MCAR assumption. For example, im-

putation could be used to address some of these limitations; however, it is not clear how

the imputation uncertainty could be folded into the PCEV uncertainty in a computationally

efficient way (i.e. minimising the use of resampling techniques).

As we have highlighted in this study, multivariate analysis can have an important impact

on statistical power when analysing correlated variables. Targeted sequencing methods like

MCC-Seq are particularly well-suited to these methods, since they explicitly target spe-

cific genomic regions. On the other hand, since genetic distance is an important driver of

correlation between methylation levels, multivariate methods could also be used to analyse

data from any studies involving methylation sequencing. We hope that the present example

encourages researchers to pursue this avenue further.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I presented three manuscripts, corresponding to Chapters 3, 4, and 5. To-

gether, these manuscripts described specific approaches to dimension reduction with high-

dimensional datasets, both from the point of view of estimation (i.e. estimating the dimension

reduction parameters) and from the point of view of inference (i.e. how the extracted compo-

nents provide evidence of global associations). As discussed in Chapter 2, a key assumption

of many dimension reduction methods for high-dimensional data is sparsity : a small number

of latent features give rise to the high-dimensional dataset. Indeed, most high-dimensional

approaches to dimension reduction discussed in Chapter 2 leveraged this sparsity assumption.

Chapter 3 proposes a different approach to PCEV motivated by this sparsity principle and

implemented through structured estimation of the covariance matrix. Specifically, I showed

that, if the response variables can be partitioned into blocks such that variables between

different blocks are uncorrelated, PCEV can be performed in two stages: first, PCEV is

performed one block at a time, and second, PCEV can be performed again on the obtained

components. Through extensive simulations, I demonstrated that this block approach has
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higher power than common high-dimensional approaches, and I showed that the inference

results are quite robust to violations of the “block-independence” assumption. Critically, the

block approach is a rare example of a high-dimensional approach that does not require any

tuning parameter. This characteristic translates into high computational efficiency.

In Chapter 4, I looked at the double Wishart problem in the context of high-dimensional

datasets. The largest root of double Wishart problems is commonly used as a test statistic

for multivariate methods, such as MANOVA, CCA, and PCEV. As reviewed in Chapter 2,

the distribution of the largest root under the null hypothesis of no association between the

two datasets Y,X has been extensively studied in the regular case, i.e. in the classical case

where p, q < n. However, in high dimensions, very little is known about the distribution.

The manuscript presented in Chapter 4 is one of the first to investigate the singular case

and propose an efficient inferential strategy in high dimensions. Specifically, I provided

numerical evidence that, after a suitable transformation, the largest root approximately

follows a Tracy-Widom distribution of order 1. Building on that evidence, I showed that

using a small number of permutations, we could estimate the location-scale parameters of

this approximating distribution. As a consequence, we can compute valid p-values for high-

dimensional inference for all double Wishart problems.

Finally, in Chapter 5, I showed how the ideas of the two previous manuscripts can be used

for region-based analyses of DNA methylation levels. Specifically, I studied the association

between DNA methylation levels and ACPA levels in individuals without any clinical mani-

festation of RA. The methylation levels were measured using a recently developed targeted

custom capture sequencing method. The CpG dinucleotides were naturally grouped into

regions when designing the molecular assay, and I showed that these regions could be used

to perform a global association test between methylation and ACPA. For about 10% of the

analysed regions, there were more CpG dinucleotides than observations, and therefore I used

the results from Chapter 4 to compute p-values. This region-based approach uncovered many
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Differentially Methylated Regions (DMRs) that were missed by the first analysis.

I also developed several R packages while carrying out the work in these three chapters. The

package pcev implements the different versions of PCEV used in this thesis: the classical

version (i.e. n ≥ p), the block approach from Chapter 3, and the singular approach from

Chapter 4. The package covequal implements the empirical estimator from Chapter 4 to

perform a test of equality of covariance matrices with high-dimensional data. The package

rootWishart implements the algorithms of Chiani [2014] and Chiani [2016]. The required

arbitrary-precision linear algebra is implemented using the C++ libraries boost and eigen.

All three packages have been released on Comprehensive R Archive Network (CRAN) and

are actively maintained.

6.1.1 Limitations

In Chapter 3, through extensive simulations, I demonstrated that inference is robust to vio-

lations of the block-independence assumption. However, estimation is not quite as robust. In

other words, the PCEV component estimated using the block approach will vary depending

on the strength of the correlation between the blocks. As seen in the simulation results of

Chapter 3, this variability of the component has a limited impact on the Variable Importance

on Projection (VIP) values, but it could have more important impacts on other downstream

uses of the estimated component, e.g. if the component were used as part of a structural

equation model.

In Chapter 4, I provided an empirical estimator that allows computing p-values in high

dimensions. However, this estimator does not address any of the limitations coming from

the decreasing signal-to-noise ratio that results from an increasing number of variables. The

extension of the empirical estimator to the Ledoit-Wolf linear shrinkage covariance estimator

partly addresses this issue, but in general, there still needs to be a cost-benefit analysis of

computational efficiency versus statistical power when opting for the Tracy-Widom empirical
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estimator.

In Chapter 5, the limitations of PCEV due to missing data are in the forefront. I opted for

a complete-case analysis, but this approach can significantly decrease statistical power and

even lead to biased estimates.

More generally, this thesis focused on the relationship between two sets of variables Y and

X. Accordingly, I excluded all multivariate methods developed for the analysis of three sets

or more. These methods are often grouped under the umbrella terms “data integration”

or “data fusion”. Specific examples include generalized canonical correlation analysis [Horst,

1961, Kettenring, 1971] and multiblock factor analysis [Eslami et al., 2013]. However, I would

like to highlight that some extensions of these data integration methods to high-dimensional

datasets have followed a parallel development to what I described in Section 2.1.4. That is,

regularised approaches have been proposed based on the sparsity principle. For example,

see Tenenhaus and Tenenhaus [2014].

Furthermore, I restricted the discussion in this thesis to linear approaches to dimension

reduction. That is, all dimension reductions were obtained through a linear projection

of Y or X. There is a vast literature on nonlinear dimension reduction, also known as

manifold learning. Examples include kernel approaches to PCA and CCA, Locally Linear

Embedding, Self-Organising Maps, and t-Distributed Stochastic Neighbour Embedding [Lee

and Verleysen, 2007]. The focus of manifold learning is somewhat different than dimension

reduction as presented here. Indeed, whereas this thesis is interested in making inference

about the relationship between Y and X, manifold learning is often seen as an exploratory

or visualisation technique. For this reason, I excluded these approaches from consideration

for this thesis.
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6.2 Future work

The main chapters of this thesis highlight at least two potential avenues for future re-

search. First, all three manuscripts presented multivariate analyses over subsets of the

high-dimensional data: a gene-based analysis of the Assessment of Risk for Colorectal Tu-

mors in Canada (ARCTIC) dataset; a pathway-based analysis of methylation data from

patients with systemic auto-immune diseases; and a region-based analysis of methylation

levels and ACPA levels. In all three settings, I used a Bonferroni correction to account for

multiple testing across the analysed sets. This approach is likely conservative. Indeed, the

correlation between methylation levels in different genomic segments or between pathways

induces correlation between the corresponding test statistics. In Chapter 4, I used a heuristic

to estimate the effective number of independent tests; this was achieved by looking at the

average number of pathways under which a CpG dinucleotide was classified. However, more

work is required for a systematic approach to estimating this effective number of independent

tests. For PCEV and CCA, this amounts to studying the correlation between largest roots

of related double Wishart problems. Currently, very little is known about these correlation

patterns.

Another avenue for future work was mentioned in Chapter 5. Currently, in the presence of

missing data, PCEV can only be used for a complete-case analysis. A natural compromise

would be to first impute the missing data, and then perform PCEV. Future work would look

into the effect of imputation on the overall properties of PCEV.

Finally, I am interested in understanding in what capacity nonlinear dimension reduction

can help improve our understanding of the aetiology of complex diseases. Indeed, given the

complex architecture of some of these diseases, where complex cascades and interactions of

multiple factors are likely to occur, nonlinear dimension reduction could potentially capture

latent structures that are more relevant to the biological question. I am currently conducting

preliminary work addressing these questions in the context of predictive modelling.
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6.3 Concluding remarks

High-dimensional data has driven many methodological advancements over the last decades.

Dimension reduction methods can leverage the correlation between multiple phenotypes or

molecular markers. In this way, they help decrease the multiple testing burden, which is

particularly acute with high-dimensional datasets generated by high-throughput technolo-

gies. Accordingly, always improving high-dimensional approaches for multivariate analytical

methods will be crucial if we want to make sense of all the biological data being generated

daily. Robust, sound, and efficient statistical methods will continue to be important for

improving our knowledge of the aetiology of complex diseases.
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APPENDIX A

Appendix to Manuscript 1

A.1 Appendix 1: proof of Theorem 1

The proof of Theorem 1 will follow from the proof of the following, more general result.

Theorem 4. Let A and B be two positive semidefinite matrices of dimension p × p, with

B invertible. Assume B is block diagonal:

B =

⎛⎜⎜⎜⎜⎝
B1 · · · 0

... . . . ...

0 · · · Bb

⎞⎟⎟⎟⎟⎠ ,

and decompose A similarly:

A =

⎛⎜⎜⎜⎜⎝
A11 · · · A1b

... . . . ...

Ab1 · · · Abb

⎞⎟⎟⎟⎟⎠ .

Then the maximisation of the expression

h(w) =
wTAw

wTBw
,
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can be decomposed in b+ 1 distinct maximisations, as follows:

1. Maximise the expression

hi(w) =
wTAiiw

wTBiw
,

for i = 1, . . . , b; let ui be the solution of the i-th maximisation.

2. Define the following matrices:

Ã =

⎛⎜⎜⎜⎜⎝
uT
1A11u1 · · · uT

1A1bub

... . . . ...

uT
b Ab1u1 · · · uT

b Abbub

⎞⎟⎟⎟⎟⎠ , B̃ =

⎛⎜⎜⎜⎜⎝
uT
1B1u1 · · · 0

... . . . ...

0 · · · uT
b Bbub

⎞⎟⎟⎟⎟⎠ .

Maximise the expression

H(w) =
wT Ãw

wT B̃w
,

and denote the maximiser of H(w) by v = (v1, . . . , vb).

3. The maximiser of the original expression h(w) is thus given by w = (v1u1, . . . , vbub).

Proof. We start by solving the original maximisation problem. Let L be a square-root of B,

so that B = LLT . We thus have

h(w) =
wTAw

wTBw

=
wT (LL−1)A(L−TLT )w

wTLLTw

=
(wTL)L−1AL−T (LTw)

(wTL)(LTw)
.

Therefore, if c is an eigenvector of L−1AL−T associated to its largest eigenvalue, then w :=

L−Tc maximises h(w).
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Since B (and thus L) is block diagonal, we can be explicit about the matrix L−1AL−T ;

namely, we have

L−1AL−T =

⎛⎜⎜⎜⎜⎝
L−1

1 A11L
−T
1 · · · L−1

1 A1bL
−T
b

... . . . ...

L−1
b Ab1L

−T
1 · · · L−1

b AbbL
−T
b

⎞⎟⎟⎟⎟⎠ ,

where Li is the i-th block of L.

Now, we repeat the same analysis but with the first b maximisations. For a fixed i, we have

hi(w) =
wTAiiw

wTBiw

=
wT (LiL

−1
i )Aii(L

−T
i LT

i )w

wTLiLT
i w

=
(wTLi)L

−1
i AiiL

−T
i (LT

i w)

(wTLi)(LT
i w)

.

Similarly as above, if ci is an eigenvector of L−1
i AiiL

−T
i associated to its largest eigenvalue,

then ui := L−T
i ci maximises hi(w); let u = (u1, . . . ,ub) be the concatenation of all these

vectors, and note that its length is equal to p.

The final maximisation takes more care. First, we note that

B̃ =

⎛⎜⎜⎜⎜⎝
uT
1B1u1 · · · 0

... . . . ...

0 · · · uT
b Bbub

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
uT
1L1L

T
1 u1 · · · 0

... . . . ...

0 · · · uT
b LbL

T
b ub

⎞⎟⎟⎟⎟⎠
= diag

(︁
∥LT

i ui∥
)︁2

.
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We have thus found a square root for the b× b diagonal matrix B̃.

As above, the maximisation of H(w) is related to an eigenvalue problem. In this case, we

are looking for an eigenvector of the matrix

diag
(︁
∥LT

i ui∥
)︁−1 · Ã · diag

(︁
∥LT

i ui∥
)︁−1

=
[︁
∥LT

i ui∥−1(uT
i Aijuj)∥LT

j uj∥−1
]︁
ij
.

Let d = (d1, . . . , db) be an eigenvector of this matrix associated to its largest eigenvalue. It

finally follows that

v = (v1, . . . , vb) = diag
(︁
∥LT

i ui∥
)︁−1

d =
(︁
∥LT

1 u1∥−1d1, . . . , ∥LT
b ub∥−1db

)︁
maximises H(w).

Recall our claim that w = (v1u1, . . . , vbub) maximises the original criterion

h(w) =
wTAw

wTBw
.
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We can write

w =

⎛⎜⎜⎜⎜⎝
v1u1

...

vbub

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
∥LT

1 u1∥−1d1u1

...

∥LT
b ub∥−1dbub

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
∥c1∥−1d1L

−T
1 c1

...

∥cb∥−1dbL
−T
b cb

⎞⎟⎟⎟⎟⎠

= L−T

⎛⎜⎜⎜⎜⎝
∥c1∥−1d1c1

...

∥cb∥−1dbcb

⎞⎟⎟⎟⎟⎠ .

Therefore, to finish the proof, we need to show that w̃ = (∥c1∥−1d1c1, . . . , ∥cb∥−1dbcb) is

an eigenvector of L−1AL−T associated to its largest eigenvalue. In other words, we need to

show that w̃ maximises the ratio

h̃(w) =
wT (L−1AL−T )w

wTw
.
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We first compute the denominator:

w̃T w̃ = (∥c1∥−1d1c1, . . . , ∥cb∥−1dbcb)
T (∥c1∥−1d1c1, . . . , ∥cb∥−1dbcb)

=
b∑︂

i=1

∥ci∥−2d2i c
T
i ci

=
b∑︂

i=1

∥ci∥−2d2i ∥ci∥2

=
b∑︂

i=1

d2i

= dTd.

On the other hand, the numerator is given by

w̃T (L−1AL−T )w̃ =
b∑︂

i=1

b∑︂
j=1

∥ci∥−1dic
T
i L

−1
i AijL

−T
j ∥cj∥−1djcj

=
b∑︂

i=1

b∑︂
j=1

∥LT
i ui∥−1di(u

T
i Li)L

−1
i AijL

−T
j ∥LT

j uj∥−1dj(L
T
j uj)

=
b∑︂

i=1

b∑︂
j=1

di∥LT
i ui∥−1(uT

i Aijuj)∥LT
j uj∥−1dj

= dT
[︁
∥LT

i ui∥−1(uT
i Aijuj)∥LT

j uj∥−1
]︁
ij
d.

In other words, the ratio h̃(w̃) evaluated at w̃ is equal to

h̃(w̃) =
dT

[︁
∥LT

i ui∥−1(uT
i Aijuj)∥LT

j uj∥−1
]︁
ij
d

dTd
.

But since d is an eigenvector for the matrix
[︁
∥LT

i ui∥−1(uT
i Aijuj)∥LT

j uj∥−1
]︁
ij

associated to

its largest eigenvalue, we know that this ratio is maximised. This concludes the proof.

As a consequence of this theorem, we have proven the validity of the block approach. Note
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that since the maximisation of the two ratios

wTVMw

wT (VM +VR)w
,

wTVMw

wTVRw

is equivalent, it follows that the independence assumption needed for the block approach can

be made either conditional on the covariates X or unconditionally. Moreover, because of the

generality of the theorem, we can deduce that the block approach also works for extracting

further components; one simply needs to regress the first component on Y and perform

PCEV on the residuals to get the second component, and so on.
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A.2 Appendix 2: Wilks test of significance

Let X be a single covariate, and consider the multivariate regression of X on a p-dimensional

response vector Y = (Y1, . . . , Yp). It is well known that

F :=
SSReg/p

SSRes/(n− p− 1)
∼ F (p, n− p− 1).

Moreover, note that we can rewrite F as follows:

F =
SSReg/p

SSRes/(n− p− 1)

=
R2/p

(1−R2)/(n− p− 1)

=

(︃
R2

1−R2

)︃
·
(︃
n− p− 1

p

)︃
.

It remains to show that λ = R2/(1−R2). But since R2 is the coefficient of multivariate cor-

relation between X and the p variables Y1, . . . , Yp, R2 is defined as the maximum correlation

between X and any linear combination of Y:

R2 := max
w

Cor(X,wTY).

Therefore, R2 must be equal to the first canonical correlation between Y and X. Hence, we

have

R2 =
λ

1 + λ
⇔ λ =

R2

1−R2
.

This completes the proof.
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A.3 Appendix 3: Roy’s largest root test statistic

In the hypothesis test framework developed above, we presented two tests based on the

largest eigenvalue λ of the matrix V−1
R VM , which is also the largest root of the determinantal

equation

det(VM − λVR) = 0.

Under the assumption that there is only one covariate, we can derive the exact distribution

of the ratio λ/(1+λ); as noted in Appendix 2, this results holds as long as n > p+1, where

n is the sample size and p, the number of response variables.

More generally, Johnstone [2009] derived an approximation to the distribution of λ, after a

suitable transformation. The result, using the notation of this article, is given below:

Theorem 5. [Johnstone, 2008] As n, q, p → ∞, we have

log λ− µ

σ

D−→ TW (1),

where TW (1) is the Tracy-Widom distribution of order 1 [Tracy and Widom, 1996], and µ, σ

are defined as follows: let s = min(p, q) and write

M =
| p− q | −1

2
, N =

n− q − p− 2

2
, L = 2(s+M +N) + 1.

Next, define

sin2(γ/2) =
s− 1/2

L

sin2(φ/2) =
s+ 2M + 1/2

L
.
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Finally, we set

µ = 2 log

(︃
tan

(︃
φ+ γ

2

)︃)︃
σ3 =

16

n

(︁
sin2(φ+ γ) sinφ sin γ

)︁−1
.

Under the scenario where there is only one covariate and n > p+1, we recommend using the

Wilks’ Lambda test, since it typically has higher power than the test based on Johnstone’s

approximation. In any case, Theorem 5 can be used in much more generality, even when

p ≫ n.
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A.4 Appendix 4: Relationship to other multivariate ap-

proaches

A.4.1 Notations

To discuss the relationship of PCEV with other existing methods, one needs to introduce

some notations and background. Assume that the vectors Y and X are measured on the

same sampling unit i, (i = 1, . . . , n), and denote Y and X the matrices n × p and n × q of

the observed data, respectively. Without loss of generality, we will assume that Y and X are

centred matrices. Model (1) in the article leads to a multivariate regression model between

Y and X. Thus, one can write

Y = XB+ E,

where the matrix B is the coefficients of the model.

The least square estimator of B is given by

B̂ = (XXT )−1XTY = S−1
xxSxy, (A.1)

where Sxx and Sxy are block forms of the overall sample covariance matrix S of the vector

(y1, . . . , yp, x1, . . . , xq), with S given as

S =

⎛⎜⎝ Syy Syx

Sxy Sxx

⎞⎟⎠ . (A.2)

One can also write the total sum of squares and products as

YTY = YTY − B̂TXTY + B̂TXTY (A.3)

= E+H,
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where

E = YTY − B̂TXTY,

is the overall sum of squares and products that is unexplained by X (i. e. residuals) and

H = B̂TXTY,

is the overall regression sum of squares and products matrix (i. e. variance explained by X).

Notice also that following (A.1), one can write E and H in terms of the blocks form of the

overall sample covariance matrix S in (A.2) as follow:

E = Syy − SyxS
−1
xxSxy, (A.4)

H = SyxS
−1
xxSxy. (A.5)

A.4.2 PCEV and its relationship to CCA

Recall that PCEV seeks a linear combination of outcomes, wTY, which maximises the ratio

h2(w) of variance being explained by X. Thus, following (A.3), the heritability h2(w) defined

in section 2.1 of the paper can be written as

h2(w) =
wTHw

wT (H+ E)w
,

If one substitutes E and H by their values from equations (A.4) and (A.5), then one can

write

h2(w) =
wTSyxS

−1
xxSxyw

wTSyyw
. (A.6)
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Thus, the vector w that maximises h2(w) in (A.6) can be obtained as the first eigenvector

of S−1
yy SyxS

−1
xxSxy, which is the first canonical direction on Y. The maximum heritability in

this case is the largest squared canonical correlation, r21.

Therefore, even if PCEV seeks the best linear combination of Y, since it maximises the ratio

of the variance explained to total variance, it implicitly looks for the best linear combination

of X with maximum correlation with wT
PCEVY.

A.4.3 PCEV and its relationship to LDA and one-way MANOVA

Assume that we have K groups (e. g. factor with K levels) and assume that the p × 1

vector Y is measured on the sampling unit i, (i = 1, . . . , n) for each group k = 1, . . . , K, and

denote Y the matrices nK × p of the observed data. Notice that here we deal with a simple

balanced case where n the number of units at each group is the same. All the results remain

the same for the unbalanced case.

In order to establish a relationship between PCEV and LDA (and one-way MANOVA), one

needs to rewrite the MANOVA model as a multivariate regression model. To do so, one

needs to assume first K − 1 dummy variables xk, k = 1 . . . , (K − 1), defined as

xk =

⎧⎪⎨⎪⎩ 1 for subjects belonging to group k

0 elsewhere

Then, one can write the MANOVA model as the multivariate regression of Y on the dummy

variables xk, k = 1 . . . , (K − 1). One can write,

Y = XB+ E.

Following equation (A.3), one can verify that E and H are exactly the within sum of squares

and products and the between sum of squares and products, respectively.
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Again, from the definition of heritability, one can see that PCEV searches for direction on

the column space of Y that maximises the ratio of the variation explained by the groups to

the total variation. That is, one can write

h2(w) =
wTSSBw

wT (SSB+ SSW)w
,

where SSB and SSW are the within sum of squares and products and the between sum of

squares and products, respectively. Thus, the vector wPCEV that maximises the heritability is

exactly the first linear discriminant function. In the MANOVA context, h2(wPCEV ) is termed

Roy’s largest root test. Another interpretation of h2(wPCEV ) is as the maximum squared

correlation r21, between the first discriminant function and the best linear combination of the

K − 1 dummy variables. The later interpretation can be concluded from the relationship

between PCEV and CCA.

Note that the heritability or Roy’s largest root test statistic is equal to

h2(wPCEV ) =
λ1

1 + λ1

, (A.7)

where λ1 is the largest eigenvalue of SSW−1SSB. For K > 2, its distribution is difficult

to determine but an approximation can be used to calculate an exact p-value. SAS uses

Davies approximation to calculate the p-value. In the case of only two groups (K = 2), λ1 is

proportional to the Hoteling statistic which is the generalisation of the squared of the t-test

statistic in the univariate case. Thus λ1 can be transformed to a Fischer exact-test statistic,

and can be used instead of h2(wPCEV ).
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A.5 Appendix 5: Supplementary figures and results

Table A.1: Type I error of PCEV as a function of the within-block correlation ρW and the
number of responses p, for several significance levels.

Within-block Significance level Number of response variables
correlation p = 20 p = 50 p = 100 p = 200 p = 300 p = 400

ρW = 0

0.1 0.09922 0.09978 0.09958 0.10139 0.09971 0.09954
0.05 0.05044 0.04908 0.04996 0.05057 0.05033 0.05089
0.01 0.01015 0.00994 0.01004 0.01008 0.00970 0.01030
0.005 0.00550 0.00498 0.00512 0.00503 0.00473 0.00530
0.001 0.00108 0.00108 0.00110 0.00084 0.00096 0.00109
0.0005 0.00055 0.00058 0.00050 0.00033 0.00053 0.00069
0.0001 0.00007 0.00011 0.00011 0.00005 0.00009 0.00016

ρW = 0.5

0.1 0.09902 0.10070 0.09958 0.10139 0.09971 0.09954
0.05 0.04960 0.05010 0.04996 0.05057 0.05033 0.05089
0.01 0.00993 0.00979 0.01004 0.01008 0.00970 0.01030
0.005 0.00497 0.00495 0.00512 0.00503 0.00473 0.00530
0.001 0.00093 0.00078 0.00110 0.00084 0.00096 0.00109
0.0005 0.00043 0.00043 0.00050 0.00033 0.00053 0.00069
0.0001 0.00009 0.00011 0.00011 0.00005 0.00009 0.00016

ρW = 0.7

0.1 0.09977 0.10118 0.09943 0.09863 0.10001 0.09977
0.05 0.05022 0.05105 0.04874 0.04915 0.04981 0.05036
0.01 0.01005 0.00994 0.00974 0.01022 0.00952 0.01013
0.005 0.00490 0.00504 0.00485 0.00532 0.00462 0.00490
0.001 0.00109 0.00108 0.00101 0.00113 0.00094 0.00080
0.0005 0.00049 0.00064 0.00054 0.00064 0.00039 0.00036
0.0001 0.00013 0.00011 0.00012 0.00010 0.00013 0.00010
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Table A.2: Running times relative to PCEV for four high-dimensional methods as a function
of the number of outcomes p. There is no correlation between the response variables (results
are similar for other correlation structures).

p
100 200 300 400 500

PCEV 1 1 1 1 1
lasso 53 27 19 15 9
sPLS 507 446 348 289 253
rCCA 2221 4733 6968 8969 11347
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Figure A.1: Type I error as a function of the correlation parameters ρw and ρb, and the
number of responses p.
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Figure A.2: True positive rate as a function of the number of selected variables in
the high-dimensional simulation scenario. Panels are arranged by sample size (p =
100, 200, 300, 400, 500) and correlation structure (each pair corresponds to the within-block
ρw and between-block ρb correlation, respectively).
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Figure A.3: Methylation sequencing data: Univariate analysis results (-log 10 pvalues) for a
genomic region near the BLK gene on chromosome 8.
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Figure A.4: Methylation sequencing data: relationship between VIP, univariate regression
coefficients and univariate p-values
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Figure A.5: ADNI study: correlation map of the 96 regions of the brain. The 10 blocks
obtained by hierarchical clustering for the PCEV-block approach can be identified using the
dendrogram at the top of the figure.
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APPENDIX B

Appendix to Manuscript 2

B.1 Computation of the largest root in singular settings

In high-dimensional settings, both matrices A and B often have a singular distribution. If

the estimate of A is not invertible, special care is required in order to compute the largest

root. More precisely, we have to use a truncated variant of the eigenvalue decomposition

(EVD) or singular value decomposition (SVD). This computational trick is well-known in the

machine learning community [Udell et al., 2016], yet it does not seem to have received similar

attention in the statistical literature. Therefore we review this procedure below.

Truncated EVD proceeds as follows: let Â, B̂ be realizations of the estimators A,B, respec-

tively. Let r be the rank of Â. From ordinary SVD, we know there exists an orthogonal

matrix T of the same dimension as Â such that

D := T T ÂT

is a diagonal matrix with exactly r nonzero values on the diagonal. Let D[r] be the diagonal

matrix obtained from D by keeping only the nonzero elements, and let T[r] be the n × r

matrix defined by keeping only the columns of T corresponding to the nonzero elements of
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the diagonal of D. If we write T̃ = T[r]D
−1/2
[r] , we get

T̃ T ÂT̃ = Ir.

We can then use ordinary SVD a second time and diagonalize T̃ T B̂T̃ using an orthogonal

transformation T ′. Therefore, if we let S := T̃ T ′, we get

ST B̂S = Λ

ST ÂS = Ir,

where Λ is a diagonal matrix. One can check that the largest diagonal element of Λ is the

largest root of the determinantal equation in the main manuscript. We further note that,

in the context of PCEV, the column of S corresponding to this largest root maximises the

proportion of variance explained.

Truncated SVD proceeds similarly, mutatis mutandis.

B.2 Fitting procedures

As mentioned in the main manuscript, we look at four different fitting strategies to derive

the estimates µ̂ and σ̂ of our main algorithm:

1. Method of moments;

2. Maximum Likelihood Estimation;

3. Maximum Goodness-of-Fit estimation [Luceño, 2006] with the Anderson-Darling test

statistic;

4. Maximum Goodness-of-Fit estimation with a modified Anderson-Darling statistic that

gives more weight to the right tail.
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As its name suggests, Maximum Goodness-of-Fit estimation seeks the values of the param-

eters that maximise a goodness-of-fit criterion.

Recall that the Anderson-Darling statistic is a defined as

A2 =

∫︂
(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x),

where Fn(x) is the empirical distribution function for a sample of size n and F (x) is the

CDF of target distribution. The modified Anderson-Darling statistic in 4. above gives more

weight to the right tail of F (x):

AR2 =

∫︂
(Fn(x)− F (x))2

1− F (x)
dF (x).

Luceño [2006] also provides computational formulas for these two statistics: let X1, . . . , Xn

be a sample of size n drawn from a distribution with CDF F (x). Let X(1) ≤ · · · ≤ X(n)

be the order statistics, and define Zi = F (X(i)) be the value of the CDF at the i-th order

statistic. Using the fact that the empirical CDF is a step function, one can show that

A2 = −n− 1

n

n∑︂
i=1

(2i− 1) (logZi + log(1− Zn+1−i)) ,

AR2 =
n

2
− 2

n∑︂
i=1

Zi −
1

n

n∑︂
i=1

(2i− 1) log(1− Zn+1−i).

B.3 Further simulation results

B.3.1 Comparison to the true distribution

For the supplementary materials, we looked at the same simulation scenario as in the main

manuscript, but we looked at more values for the parameters. We varied the dimension

p = 500, 1000, 1500, 2000 and the number of roots used to estimate the distribution K =
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25, 50, 75, 100. Finally, we looked at an exchangeable correlation structure with parameter

ρ = 0, 0.2, 0.5. Figures B.1, B.2, and B.3 correspond to ρ = 0, 0.2, 0.5, respectively.

B.3.2 Comparison to the true distribution–Linear shrinkage esti-

mator

As in the main manuscript, we repeated the above simulation scenario, but with the linear

shrinkage estimator for the Wishart matrix A. Figures B.4, B.5, and B.6 correspond to

ρ = 0, 0.2, 0.5, respectively.

B.3.3 Comparison of p-values

PCEV

We follow the same simulation scenario as in the main manuscript, with one exception: the

residual covariance matrix ΣR has an exchangeable structure with parameter ρ = 0.5. The

results appear in Figure B.7, and they are consistent with those in the main manuscript.
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Figure B.1: Approximation to the CDF: Heuristic, using four different values for the
number of permutations, compared to the true CDF. The covariance parameter is ρ = 0.
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Figure B.2: Approximation to the CDF: Heuristic, using four different values for the
number of permutations, compared to the true CDF. The covariance parameter is ρ = 0.2.
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Figure B.3: Approximation to the CDF: Heuristic, using four different values for the
number of permutations, compared to the true CDF. The covariance parameter is ρ = 0.5.
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Figure B.4: Approximation to the CDF: Heuristic, using four different values for the
number of permutations, compared to the true CDF. The covariance parameter is ρ = 0.
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Figure B.5: Approximation to the CDF: Heuristic, using four different values for the
number of permutations, compared to the true CDF. The covariance parameter is ρ = 0.2.
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Figure B.6: Approximation to the CDF: Heuristic, using four different values for the
number of permutations, compared to the true CDF. The covariance parameter is ρ = 0.5.
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Figure B.7: PCEV with ρ = 0.5: QQ-plots comparing the p-values obtained from a
permutation procedure to those obtained from the Tracy-Widom empirical estimator.
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APPENDIX C

Appendix to Manuscript 3

C.1 Gene Ontology Analysis

To gain insight into the main results, we performed a Gene Ontology (GO) Analysis of the

significant regions found by PCEV. First, we found all the genes overlapping the region we

analysed. Then, for each gene, we retrieved the corresponding GO terms. Table C.1 shows

the 20 most frequent GO terms among the significant regions.

The annotations were retrieved using the biomaRt package from Bioconductor [Durinck et al.,

2005, 2009].
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GO Identifier GO Term

GO:0005515 Protein Binding
GO:0005829 Cytosol
GO:0005634 Nucleus
GO:0005886 Plasma Membrane
GO:0005737 Cytoplasm

GO:0005654 Nucleoplasm
GO:0000981 DNA-Binding Transcription Factor Activity, RNA Polymerase II-Specific
GO:0016021 Integral Component of Membrane
GO:0046872 Metal Ion Binding
GO:0070062 Extracellular Exosome

GO:0016020 Membrane
GO:0005887 Integral Component of Plasma Membrane
GO:0005524 ATP Binding
GO:0003677 DNA Binding
GO:0004674 Protein Serine/Threonine Kinase Activity

GO:0045944 Positive Regulation of Transcription by RNA Polymerase II
GO:0005509 Calcium Ion Binding
GO:0007165 Signal Transduction
GO:0000122 Negative Regulation of Transcription by RNA Polymerase II
GO:0003723 RNA Binding

Table C.1: Top 20 most frequent Gene Ontology (GO) terms appearing among the regions
deemed significant by PCEV.
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